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In Assignment #4, we have studied and programmed the application of the mimetic spectral
element method to the Poisson equation in the computational domain Ω = [−1, 1]2. However, there
we consider the whole computational domain Ω to be a single physical element. Thus, we only need
to construct one mapping

Φ : Ωr → Ω

for the discretization. This is fine for this particular case as the comptuational domain Ω is a regular
domain. However, in most cases, we may face a irregular domain that we cannot cover it with a
single element, and we have to divide the domain into multiple elements. This is the well-known
mesh generation. There are in fact other reasons which drive us to use more than one element. For
now, we leave them for your own after-class thinking and reading. In this assignment, we study
how to apply the mimetic spectral element method on a mesh of multiple elements to the Poisson
problem as in Assignment #4. We use the domain Ω as a demonstration.

1 Mesh generation

We consider the same computational domain Ω = [−1, 1]2. Let K be a positive integer. In this
domain, we generate a mesh of K2 uniform elements. In other words, along each axis the domain is
divided into K elements. So each element is a small square (a special orthogonal rectangle) whose
edge length is h = 1

K
. And we use Ωij to denote the element

Ωij := [h(i− 1), hi]× [h(j − 1), hj], i, j ∈ {1, 2, · · · ,K} .

And these elements are globalled numbered as

Ωk = Ω(j−1)×K+i = Ωij , i, j ∈ {1, 2, · · · ,K} .
1https://mathischeap.com/contents/teaching/advanced_numerical_methods/mimetic_spectral_element_method/main
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So, k ranges from 1 to K2. See Fig. 1 for an example of this mesh.

Fig. 1: An illustration of the mesh at K = 3.

Now, for an element Ωk, we can construct a mapping which maps the reference element into it,
i.e.,

Φk : Ωr → Ωk

by [
x
y

]
= Φk(ξ, η) =

[
Φx

k(ξ)
Φy

k(η)

]
=

[
h(ξ + 1)/2 + h(i− 1)
h(η + 1)/2 + h(j − 1)

]
.

According to what we have learned in Assignment #2, we can quickly obtain the metric-related
values for the element,

J k =

h

2
0

0
h

2

 ,

Jk = det(J n) =
h2

4
,

Gk =

h2

4
0

0
h2

4

 ,

gk = det(Gk) = J2
n =

h4

16
,

J −1
k =

 2

h
0

0
2

h

 ,

J−1
k =

4

h2
,

G−1
k =

 4

h2
0

0
4

h2

 .

Obviously, it is very convenient to do reduction and reconstruction and to compute mass matrices
using this mapping the its metric-related values. And, because h = 1

K
is same for all elements, the

metric-related values are same for all elements.
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2 Discretization of the Poisson problem in elements

In Assignment #4, we do the discretization on the whole domain Ω because we consider it as
one element. Now, we do the discretization in an element Ωk. Obviously, the resulting system is
similar. In Ωk, we can obtain the following linear system,

(1)

[
Mh

D ET
DMh

S

ED 0

] [
u⃗k

φ⃗k

]
=

[
0

−f⃗k

]
.

We can see that the incidence matrix does not change. And the mass matrices becomes different
because they depend on h. And we use u⃗k, φ⃗k, f⃗k to represent the vector of expansion coefficients of
variables in element Ωk. Note that, in Assignment #4, we used the homogeneous boundary condition
φ = 0 on ∂Ω to obtain a system similar to (1). However, if Ωk is, for example, an internal element,
it does not have a similar boundary condition. Thus, ideally, (1) should have terms corresponding
to boundary integral. We have omitted them since the contribution of these boundary integrals
from different elements will cancel each other eventually.

For k ∈ {1, 2, · · · ,K2}, we can do the discretization and obtain a local system

(2) Axk = bk.

As we have analyzed, the left-hand size matrix A will be same for all elements, i.e.,

(3) A =

[
Mh

D ET
DMh

S

ED 0

]
,

And xk =

[
u⃗k

φ⃗k

]
, bk =

[
0

−f⃗k

]
will be different from elementt to element.

This means we will have K2 local linear systems for the K2 elements. Clearly, we are not going
to solve them individually; they belong to one complete problem. We somehow need to assemble
these K2 local linear systems into one global system and solve the global system. This leads to an
essential topic of all finite element methods, assembling. We will address it in the next two sections.

3 Global labeling: Gathering matrix

The key issue is: How to assemble the K2 local linear systems for the K2 elements into a global
system? To do this, we need to first do the global labeling of all expansion coefficients (or degrees
of freedom, DoF’s).

Remember that the expansions coefficients (and the corresponding basis functions) are labeled
locally in an element such that we can make the incidence and mass matrices. See Fig.2 and Fig.3
for examples of local labeling.
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Fig. 2: For an element of N = 3. Left: Distribution of expansion coefficients uij and vij of space
D(Ωk). Right: Local labeling of expansion coefficients uij and vij using um = u(j−1)×(N+1)+i+1 = uij
and vm = vj×N+i = vij .

Fig. 3: For an element of N = 3. Left: Distribution of expansion coefficients fij of space S(Ωk).
Right: Local labeling of expansion coefficients fij using fm = f(j−1)×N+i = fij .
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The local labeling happens locally in each element. So it is same in all elemenets. The global
labeling is different. The global labeling labels all DoF’s globally such that each different DoF has
one unique label. Even if a DoF is shared by two elements, it must only have one label. For example,
if two element are attached through their left-right edges. For example, see Fig. fig: local labeling
D. The DoF u31 = u4 of the left element is in fact coincident with the Dof u01 = u1 of the right
element. An example of a global labeling is shown in Fig. 4.

Fig. 4: A global labeling for K = 2 and N = 3.

In Fig. 4, a global labeling for K = 2 and N = 3 is presented. Since we use K = 2, so the
domain is divided into 4 elements. The left-bottom element is Ω1; the right-bottom one is Ω2; the
left-top one is Ω3; the right-top one is Ω4.

In this mesh of 4 elements, we can see that in total we have 120 DoF’s. Among them, 84
(colored blue) are DoF’s of uh and 36 (colored red) of them are DoF’s of φh. They are distributed
in the 4 elements. And some DoF’s of uh are shared by two elemenets. Note that since the local
system is going to be assembled into one global system, we have named the DoF’s by xi.

Under this global labeling, we can obtain the so-called gathering matrixG for the mesh. Because
we have 4 elements and in each element we have 24 + 9 = 33 DoF’s (33 × 4 > 120 because some
DoF’s are shared by elements), the gathering matrix G is a 4× 33 matrix, see it on the next page.
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G =


1 2 3 4 8 9 10 11 15 16 17 18 43 44 45 49 50 51 55 56 57 61 62 63 85 86 87 91 92 93 97 98 99
4 5 6 7 11 12 13 14 18 19 20 21 46 47 48 52 53 54 58 59 60 64 65 66 88 89 90 94 95 96 100 101 102
22 23 24 25 29 30 31 32 36 37 38 39 61 62 63 67 68 69 73 74 75 79 80 81 203 104 105 109 110 111 115 116 117
25 26 27 28 32 33 34 35 39 40 41 42 64 65 66 70 71 72 76 77 78 82 83 84 106 107 108 112 113 114 118 119 120

 .

To understand this gathering matrix, we first go back the local linear system that is in the following format, see (2),

Axk = bk,

where x =

[
u⃗k

φ⃗k

]
. And from the local labeling, we know in each element

u⃗k =



u1
u2
u3
...

u12
v1
v2
v3
...
v12


, φ⃗k =


f1
f2
f3
...

fN2

 .
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Therefore, we know

x⃗k =



u1
u2
u3
...

u12
v1
v2
v3
...
v12
f1
f2
f3
...
f9



.

And if we take the first element (row index 1), i.e., the left-bottom element, as an example. The
first (colume index 1) local DoF u1 is globally labeled x1, see Fig. 2 and Fig. 4. Therefore, we have

G|1,1 = 1.

And The 5th (colume index 5) local DoF u5 is globally labeled x8. Therefore,

G|1,5 = 8.

And the last (33rd) (colume index 33) local DoF f9 is globally labeled x99. Therefore,

G|1,33 = 99.

Similarly, you can understand all entries in G.

4 Assembling

We still take the global labeling in Fig. 4 as an example. From thise global labeling, we know
the global system must be a system of shape 120× 120. And we now define the global system to be

AX = B,

where A is a 120 × 120 square matrix, X is a 120 × 1 colume vector, and B is a 120 × 1 colume
vector. We just need to assemble A and B and send them to a linear solver. It will solve for X.

To assemble A, we first initialize A as an empty (zero) matrix,

A = 0|120×120 .

Then we do

1 for k in range(0, 4):

2 for i in range(0, 120):

3 row = G[k, i]

4 for j in range(0, 120):

5 col = G[k, j]

6 global_A[row, col] += local_A[i, j]

where global A represents A and local A represents A, see (3).
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To assemble B, we first initialize B as an empty (zero) vector,

B = 0|120×1 .

Then we do

1 for k in range(0, 4):

2 for i in range(0, 120):

3 row = G[k, i]

4 global_B[row] += local_b[k][i]

where global B represents B and local b[k] is bk.
After assembling A and B, we send them to a linear solver and solve for X. Once we obtain X,

we need to distribute entries of X to xk by

1 for k in range(0, 4):

2 for i in range(0, 120):

3 row = G[k, i]

4 x[k][i] = global_X[row]

where global X represents X and x[k] is xk.
later, we can obtain uk and φk from xk. With uk and φk, we can finally reconstruct solutions

uh and φh in each elements.

Assignment 5.1.0: Program it!

Program it to solve the same Poisson problem as in Assigment 4.1.0, but this time
with a mesh of K2 uniform elements. Reconstruct the solutions uh and φh to valid
your program.

Try it using, for example, N ∈ {2, 3, 4} and K ∈ {4, 8, 12, 16}.
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