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Mimetic spectral element method]]

Assignment #5

Yi Zhang (7K1X)

: www.mathischeap.com
@: [zhangyi_aero@hotmail.com
E3: https://github.com/mathischeap

In Assignment #4, we have studied and programmed the application of the mimetic spectral
element method to the Poisson equation in the computational domain 2 = [—1,1]%. However, there
we consider the whole computational domain §2 to be a single physical element. Thus, we only need

to construct one mapping
P:0, —- 0

for the discretization. This is fine for this particular case as the comptuational domain ) is a regular
domain. However, in most cases, we may face a irregular domain that we cannot cover it with a
single element, and we have to divide the domain into multiple elements. This is the well-known
mesh generation. There are in fact other reasons which drive us to use more than one element. For
now, we leave them for your own after-class thinking and reading. In this assignment, we study
how to apply the mimetic spectral element method on a mesh of multiple elements to the Poisson
problem as in Assignment #4. We use the domain 2 as a demonstration.

1 Mesh generation

We consider the same computational domain 2 = [—1,1]?. Let K be a positive integer. In this
domain, we generate a mesh of K2 uniform elements. In other words, along each axis the domain is
divided into K elements. So each element is a small square (a special orthogonal rectangle) whose
edge length is h = % And we use €);; to denote the element

Qj:=1[h(i—1),hi] x [A(j —1),hj], i,5€{1,2,---,K}.
And these elements are globalled numbered as

Qk:Q(j_l)XK+i:Qij7 i7j€{1727"'7K}‘
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So, k ranges from 1 to K2

See Fig. [l for an example of this mesh.
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Fig. 1: An illustration of the mesh at K = 3.

Now, for an element €2, we can construct a mapping which maps the reference element into it,

i.e.,
Cbk : Qr — Qk

by

y Py (n)

o) = s =[afia] = bia T a6 )

According to what we have learned in Assignment #2, we can quickly obtain the metric-related

values for the element,

h
- 0
Jk: 2 hl>
0 3
2
Jy =det(T,) = T
h2
— 0
gk: 4 h2 9
0 -
4
h4
ge = det(Gy) = J. = 16
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jk; == O 2 )
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4
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4
— 0
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O 2

Obviously, it is very convenient to do reduction and reconstruction and to compute mass matrices
using this mapping the its metric-related values. And, because h = % is same for all elements, the

metric-related values are same for all elements.
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2 Discretization of the Poisson problem in elements

In Assignment #4, we do the discretization on the whole domain {2 because we consider it as
one element. Now, we do the discretization in an element ;. Obviously, the resulting system is
similar. In , we can obtain the following linear system,

e 4)-[2)
Ep 0 Pk —fx
We can see that the incidence matrix does not change. And the mass matrices becomes different
because they depend on h. And we use Uy, Gy, ﬁ to represent the vector of expansion coefficients of
variables in element §2;. Note that, in Assignment #4, we used the homogeneous boundary condition
¢ = 0 on 0 to obtain a system similar to . However, if €2, is, for example, an internal element,
it does not have a similar boundary condition. Thus, ideally, should have terms corresponding
to boundary integral. We have omitted them since the contribution of these boundary integrals
from different elements will cancel each other eventually.
For k € {1,2,---, K%}, we can do the discretization and obtain a local system

As we have analyzed, the left-hand size matrix A will be same for all elements, i.e.,

_ [M}, ELM
(3) A - |:]ED 0 )

7 0
And x;, = {_, } , by = [ f»] will be different from elementt to element.
k —Jk

This means we will have K2 local linear systems for the K? elements. Clearly, we are not going
to solve them individually; they belong to one complete problem. We somehow need to assemble
these K2 local linear systems into one global system and solve the global system. This leads to an
essential topic of all finite element methods, assembling. We will address it in the next two sections.

3 Global labeling: Gathering matrix

The key issue is: How to assemble the K2 local linear systems for the K2 elements into a global
system? To do this, we need to first do the global labeling of all expansion coefficients (or degrees
of freedom, DoF’s).

Remember that the expansions coefficients (and the corresponding basis functions) are labeled
locally in an element such that we can make the incidence and mass matrices. See Figl2] and Fig[3]
for examples of local labeling.
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Fig. 2: For an element of N = 3. Left: Distribution of expansion coefficients u;; and v;; of space
D(€y,). Right: Local labeling of expansion coefficients u;; and v;; using u, = ugj—1)x(N4+1)+i+1 = Uij
and vy, = Vjxnti = Vij.

f13 fas f33 f7 fs fo
f12 fao f32 f4 f5 fe
f11 fo1 f31 f1 fa f3

Fig. 3: For an element of N = 3. Left: Distribution of expansion coefficients f;; of space S(£y).
Right: Local labeling of expansion coefficients f;; using f,, = f;_1)xn4i = fij.



MSEM-A4-WF&D:ME VERSION 2025/08/14.20:00 >—-<

The local labeling happens locally in each element. So it is same in all elemenets. The global
labeling is different. The global labeling labels all DoF’s globally such that each different DoF has
one unique label. Even if a DoF is shared by two elements, it must only have one label. For example,
if two element are attached through their left-right edges. For example, see Fig. fig: local labeling
D. The DoF u3; = uy of the left element is in fact coincident with the Dof ug; = uy of the right
element. An example of a global labeling is shown in Fig.

Yy
A
(0,1) (1,1)
X79 X80 Xg1 Xg2 X83 X84
X36X115 X37 X116 X38 X117 [X39X118 X40 X119 X41X120 |X42
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X55 X56 X57 X58 X59 X60
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X X X X X X >
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Fig. 4: A global labeling for K =2 and N = 3.

In Fig.[4 a global labeling for K = 2 and N = 3 is presented. Since we use K = 2, so the
domain is divided into 4 elements. The left-bottom element is §2;; the right-bottom one is 29; the
left-top one is §23; the right-top one is {24.

In this mesh of 4 elements, we can see that in total we have 120 DoF’s. Among them, 84
(colored blue) are DoF’s of uj, and 36 (colored red) of them are DoF’s of ¢,. They are distributed
in the 4 elements. And some DoF’s of u;, are shared by two elemenets. Note that since the local
system is going to be assembled into one global system, we have named the DoF’s by x;.

Under this global labeling, we can obtain the so-called gathering matrix G for the mesh. Because
we have 4 elements and in each element we have 24 +9 = 33 DoF’s (33 x 4 > 120 because some
DoF’s are shared by elements), the gathering matrix G is a 4 x 33 matrix, see it on the next page.
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8 8 87 91 92 93 97 98 99
88 8 90 94 95 96 100 101 102
203 104 105 109 110 111 115 116 117
106 107 108 112 113 114 118 119 120

To understand this gathering matrix, we first go back the local linear system that is in the following format, see ,

Uy,

where x = {
Pk

Ain = bk7

} . And from the local labeling, we know in each element
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Therefore, we know
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And if we take the first element (row index 1), i.e., the left-bottom element, as an example. The
first (colume index 1) local DoF uy is globally labeled x;, see Fig. and Fig. Therefore, we have

Gl,, =1
And The 5th (colume index 5) local DoF uj is globally labeled xs. Therefore,

G

15 =38
And the last (33rd) (colume index 33) local DoF fg is globally labeled xg9. Therefore,
G|1,33 =99.

Similarly, you can understand all entries in G.

4 Assembling

We still take the global labeling in Fig.[d as an example. From thise global labeling, we know
the global system must be a system of shape 120 x 120. And we now define the global system to be

AX = B,

where A is a 120 x 120 square matrix, X is a 120 x 1 colume vector, and B is a 120 x 1 colume
vector. We just need to assemble A and B and send them to a linear solver. It will solve for X.
To assemble A, we first initialize A as an empty (zero) matrix,

A

= 0|120><120'

Then we do

for k in range(0, 4):
for i in range(0, 120):
row = G[k, il
for j in range(0, 120):
col = G[k, j]
global_A[row, col] += local_A[i, jl

where global_A represents A and local_A represents A, see (3).




=W N =

N R

MSEM-A4-WF&D:ME VERSION 2025/08/14.20:00 b>——

To assemble B, we first initialize B as an empty (zero) vector,
B = 0|120><1 :

Then we do

for k in range(0, 4):
for i in range(0, 120):
row = G[k, i]
global_B[row] += local_b[k][i]

where global B represents B and local _b[k] is by.
After assembling A and B, we send them to a linear solver and solve for X. Once we obtain X,
we need to distribute entries of X to @, by

for k in range(0, 4):
for i in range(0, 120):
row = G[k, il
x[k] [i] = global_X[row]

where global X represents X and x [k] is x.
later, we can obtain w; and ¢, from x;. With u, and ¢, we can finally reconstruct solutions
up, and @y in each elements.

Assignment 5.1.0: Program it!

Program it to solve the same Poisson problem as in Assigment 4.1.0, but this time
with a mesh of K? uniform elements. Reconstruct the solutions u; and ¢, to valid
your program.

Try it using, for example, N € {2,3,4} and K € {4,8,12,16}.
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