
D
G
M
P
—
D
oc
um
en
t

MSEM-A0-L&E: R&R Version 2025/08/15.00:21 ▷——◁

Research group

Discrete Geometries of Mathematics & Physics
www.mathischeap.com/dgmp

Discrete Geometries of Mathematics and Physics

Mimetic spectral element method1

Assignment #0
Lagrange & Edge polynomials: Reduction & Reconstruction

Yi Zhang (张仪)

,: www.mathischeap.com
@: zhangyi aero@hotmail.com
¬: https://github.com/mathischeap

1 Definition

In one dimension, we consider an interval λ ∈ I = [−1, 1]. A partition of I is a set of N + 1
nodes, λ0, λ1, λ2, · · · , λN , that satisfy

(1) −1 = λ0 < λ1 < λ2 < · · · < λN = 1.

And, in this series of assignments, we will only use the Gauss-Lobatto nodes to define this partition.
Given N , the function that computes the N + 1 Gauss-Lobatto nodes which form a partition, i.e.,
satisfy (1), will be provided. You can find it at the main page of this course (see footnote) or just
click on � Gauss Lobatto nodes.py.

Over this partition, we can construct the well-known Lagrange polynomials in I as,

li(λ) =
N∏

j=0,j ̸=i

λ− λj

λi − λj

, i ∈ {0, 1, · · · , N} .

These N + 1 polynomials are of a degree N . It is clear that these Lagrange polynomials satisfy the
following nodal Kronecker delta property,

(2) li(λj) = δij =

{
1, if i = j

0, else
, i, j ∈ {0, 1, · · · , N} .

For an example of Lagrange polynomials, see Fig. 1.

1https://mathischeap.com/contents/teaching/advanced_numerical_methods/mimetic_spectral_element_method/main

1

https://mathischeap.com/dgmp
www.mathischeap.com
mailto:zhangyi_aero@hotmail.com
https://github.com/mathischeap
https://mathischeap.com/contents/teaching/advanced_numerical_methods/mimetic_spectral_element_method/GLn.html#course-msem-gln
https://mathischeap.com/contents/teaching/advanced_numerical_methods/mimetic_spectral_element_method/main


D
G
M
P
—
D
oc
um
en
t

MSEM-A0-L&E: R&R Version 2025/08/15.00:21 ▷——◁

−1.0 −0.5 0.0 0.5 1.0
λ

0.0

0.5

1.0

li
(λ

)

Fig. 1: An example of Lagrange polynomials at N = 4. It is clear that the Kronecker delta (2) is
satisfied by these polynomials. The gray vertical lines indicate the nodes of the partition.

Assignment 0.1.0: Lagrange polynomials

Program function in Python which compute the Lagrange polynomials. The format
of the function should be as follows.

1 def Lagrange_polynomials(nodes, lamb):

2 """Compute the Lagrange polynomials.

3

4 Parameters

5 ----------

6 nodes : 1d np.ndarray

7 The partition of the interval I. It should be a 1d array of shape (m, ).

For example, nodes = np.array([-1, -0.8, -0.3, 0.3, 0.8, 1]).

8 lamb : 1d np.ndarray

9 The coordinates we evaluate the Lagrange polynomials. It should be a 1d

array of shape (n, ). For example, lamb = np.linspace(-1, 1, 100).

10

11 Returns

12 -------

13 values : 2d np.ndarray

14 It is a 2d array of shape (m+1, n). For example, values[0,:] represents

first Lagrange polynomial evaluated on "lamb".

15

16 """

Assignment 0.1.1: Visualization of Lagrange polynomials

Visualize Lagrange polynomials using the plot function of matplotlib.

1 >>> import matplotlib

The edge polynomials ei(λ) are linear combinations of derivatives of Lagrange Polynomials,

ei(λ) :=
N∑
j=i

dlj(λ)

dλ
= −

i−1∑
j=0

dlj(λ)

dλ
, i ∈ {1, 2, · · · , N} .

2



D
G
M
P
—
D
oc
um
en
t

MSEM-A0-L&E: R&R Version 2025/08/15.00:21 ▷——◁

Edge polynomials are of a degree N − 1. And they satisfy an integral Kronecker delta property,

(3)

∫ λj

λj−1

ei(λ)dλ = δij =

{
1, if i = j

0, else
, i, j ∈ {1, 2, · · · , N} .

−1.0 −0.5 0.0 0.5 1.0
λ

−2

0

2

4

ei
(λ

)

Fig. 2: An example of edge polynomials at N = 4. One can prove that the Kronecker delta (3)
is satisfied by these polynomials. As an example, the edge polynomal e2(λ), i.e. the orange line,

satisfies
∫ λ2

λ1
e2(λ)dλ = 1 and

∫ λi

λi−1
e2(λ)dλ = 0 if i ∈ {1, 3, 4}.

Assignment 0.2.0: Edge polynomials

Program function in Python which compute the edge polynomials. The format of the
function should be as follows.

1 def edge_polynomials(nodes, lamb):

2 """Compute the edge polynomials.

3

4 Parameters

5 ----------

6 nodes : 1d np.ndarray

7 The partition of the interval I. It should be a 1d array of shape (m, ).

For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].

8 lamb : 1d np.ndarray

9 The coordinates we evaluate the edge polynomials. It should be a 1d array

of shape (n, ). For example, lamb = np.linspace(-1, 1, 100).

10

11 Returns

12 -------

13 values : 2d np.ndarray

14 It is a 2d array of shape (m, n). For example, values[0,:] represents

first edge polynomial evaluated on "lamb".

15

16 """

Assignment 0.2.1: Visualization of edge polynomials

Visualize edge polynomials using the plot function of matplotlib.

1 >>> import matplotlib

3



D
G
M
P
—
D
oc
um
en
t

MSEM-A0-L&E: R&R Version 2025/08/15.00:21 ▷——◁

2 Reduction & reconstruction

The Lagranga polynomials are linearly independent. That is saying, recall the idea of linear
(or vector) space in linear algebra, they as basis functions can form a base of a linear space. Let L
denote the linear space they span, i.e.

L := span (l0, l1, · · · , lN ) .

Let p be a C1 continuous function on I. We now can project p onto a polynomial ph ∈ L as

(4) ph(λ) =
N∑
i=0

pil
i(λ),

where

(5) pi = p (λi) i ∈ {0, 1, · · · , N} .

And, according to the Kronecker delta property (2), we also know that

pi = ph (λi) , i ∈ {0, 1, · · · , N} ,

where pi are usully called the expansion coefficients or degrees of freedom (DoF’s). In linear algebra,
p0, p1, · · · , pN are called the coordinates of ph under the base

(
l0, l1, · · · , lN

)
.

The process of computing the expansion coefficients, i.e., (5), is called reduction, denoted by
I. And process of making ph using the expansion coefficients and the basis functions is called
reconstruction, denoted by R. The projection operator, π, is defined as

π = R ◦ I,

i.e., the process of reduction and reconstruction together: p
π−→ ph.

The edge polynomials are also linearly independent. And we use E to denote the linear space

E := span (e1, e2, · · · , eN ) .

Let q be another C0 continuous function on I. We can project q onto a polynomial qh ∈ E as

(6) qh(λ) =
N∑
i=1

qie
i(λ),

where the expansion coefficients are

(7) qi =

∫ λi

λi−1

q (λ) dλ, i ∈ {1, 2, · · · , N} .

Equations (6) and (7) defines reconstruction and reduction for the space E, respectively. According
to the Kronecker delta property (3), we also know that the expansion coefficients satisfy

qi =

∫ λi

λi−1

qh (λ) dλ, i ∈ {1, 2, · · · , N} .

It is seen that either the Lagrange polynomial space L or the edge polynomial space E looks
regular. The special thing is the connection between them as we will see now. Assume q is the

4



D
G
M
P
—
D
oc
um
en
t

MSEM-A0-L&E: R&R Version 2025/08/15.00:21 ▷——◁

derivative of p, i.e.,

q(λ) = p′(λ) =
dp(λ)

dλ
.

Then we will have that

(8) qh(λ) = p′h(λ) =
dph(λ)

dλ
,

which is saying the projection operator commute with the derivative operator. In other words, we
can first perform the derivative then do the projection. The output is same to that of a projection
followed by a derivative.

Now, in more details, (8) is

N∑
i=1

qie
i(λ) =

d
(∑N

i=0 pil
i(λ)

)
dλ

,

see (4) and (6). In this equation, the Lagrange polynomials and edge polynomials are known. The
point of interest is the relation between the expansion coefficients: how to relate pi to qi. Without
a proof, we give the following conclusion:

qi = pi − pi−1, i ∈ {1, 2, · · · , N} .

If we put the expansion coefficients in colume vectors,

p⃗ =


p0
p1
...
pN

 , q⃗ =


q1
q2
...
qN

 ,

we will find an N × (N + 1) matrix E, called incidence matrix,

E =



−1 1 0 0 0 · · · 0 0 0
0 −1 1 0 0 · · · 0 0 0
0 0 −1 1 0 · · · 0 0 0
0 0 0 −1 1 · · · 0 0 0
...

...
...

...
. . .

. . .
...

...
0 0 0 0 · · · −1 1 0 0
0 0 0 0 · · · 0 −1 1 0
0 0 0 0 · · · 0 0 −1 1


,

that satisfies

(9) q⃗ = Ep⃗.

Now, we can see that, once we are given a function in L, to compute its derivative, we just need to
apply the incidence matrix E to the vector of its expansion coefficients. And the output will be the
expansion coefficients of its derivative in space E.

Assignment 0.3.0: Projection of Lagrange polynomial space

You need to program two functions, the first one does the reduction and the second
one does the reconstruction.

1 def Lagrange_space_reduction(nodes, func):

5



D
G
M
P
—
D
oc
um
en
t

MSEM-A0-L&E: R&R Version 2025/08/15.00:21 ▷——◁

2 """Reduce the function "func" to Lagrange polynomial space defined over

"nodes".

3

4 Parameters

5 ----------

6 nodes : np.ndarray

7 The partition of the interval I. It should be a 1d array of shape (m, ).

For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].

8 func :

9 The C1 smooth function to be reduced to the Lagrange polynomial space.

10

11 Returns

12 -------

13 expansion_coefficients : np.ndarray

14 A 1d array of shape (m+1,) that contains the expansion coefficients.

15

16 """

17

18 def Lagrange_space_reconstruction(nodes, expansion_coefficients, lamb):

19 """Reconstruct the polynomial in the Lagrange polynomial space over "lamb".

20

21 Parameters

22 ----------

23 nodes : np.ndarray

24 The partition of the interval I. It should be a 1d array of shape (m, ).

For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].

25 expansion_coefficients : np.ndarray

26 A 1d array of shape (m+1, ) that contains the expansion coefficients.

27 lamb : np.ndarray

28 The coordinates we evaluate the polynomial. It should be a 1d array of

shape (n, ). For example, lamb = np.linspace(-1, 1, 100).

29

30 Returns

31 -------

32 reconstructed_values : np.ndarray

33 A 1d array of shape (n, ) that represents the reconstructed values at

"lamb".

34

35 """

Assignment 0.3.1: Projection of edge polynomial space

You need to program two functions, the first one does the reduction and the second
one does the reconstruction. Tip: You can use the numerical integration function from
scipy package (see scipy.integrate) for the integration.

1 def edge_space_reduction(nodes, func):

2 """Reduce the function "func" to edge polynomial space defined over "nodes".

3

4 Parameters

5 ----------

6 nodes : np.ndarray

7 The partition of the interval I. It should be a 1d array of shape (m, ).

For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].

8 func :

9 The function to be reduced to the edge polynomial space.

6



D
G
M
P
—
D
oc
um
en
t

MSEM-A0-L&E: R&R Version 2025/08/15.00:21 ▷——◁

10

11 Returns

12 -------

13 expansion_coefficients : np.ndarray

14 A 1d array of shape (m, ) that contains the expansion coefficients.

15

16 """

17

18 def edge_space_reconstruction(nodes, expansion_coefficients, lamb):

19 """Reconstruct the polynomial in the edge polynomial space over "lamb".

20

21 Parameters

22 ----------

23 nodes : np.ndarray

24 The partition of the interval I. It should be a 1d array of shape (m, ).

For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].

25 expansion_coefficients : np.ndarray

26 A 1d array of shape (m, ) that contains the expansion coefficients.

27 lamb : np.ndarray

28 The coordinates we evaluate the polynomial. It should be a 1d array of

shape (n, ). For example, lamb = np.linspace(-1, 1, 100).

29

30 Returns

31 -------

32 reconstructed_values : np.ndarray

33 A 1d array of shape (n, ) that represents the reconstructed values at

"lamb".

34

35 """

Assignment 0.3.2: Compute derivative with incidence matrix

You need to program a function to compute the incidence matrix first. Then you can
play with the incidence matrix to verify (9).

1 def incidence matrix_1d(nodes):

2 """Compute the incidence matrix.

3

4 Parameters

5 ----------

6 nodes : np.ndarray

7 The partition of the interval I. It should be a 1d array of shape (m, ).

For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].

8

9 Returns

10 -------

11 incidence_matrix: np.ndarray

12 A 2d array of shape (m, m+1) that represents the incidence matrix.

13

14 """

7



D
G
M
P
—
D
oc
um
en
t

MSEM-A0-L&E: R&R Version 2025/08/15.00:21 ▷——◁

3 Literature revisit

To understand Lagrange polynomials and edge polynomials from more angles, we refer to the
original paper [1] where they are introduced.

References

[1] M. Gerritsma, Edge functions for spectral element methods, in: J. S. Hesthaven, E. M. Rønquist
(Eds.), Spectral and High Order Methods for Partial Differential Equations, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011, pp. 199–207.

8


	Definition
	Reduction & reconstruction
	Literature revisit

