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CHAPTER 1
INTRODUCTION

Partial differential equations (PDEs) [1, 2] are important tools for the modeling of physics.
They arise in numerous fields, see, for instance, the Poisson equation [3, 4], elasticity equations
[5, 6] in continuum mechanics, the wave equation [7] in acoustics, Maxwell’s equations [8] in
electromagnetism, the Schrödinger equation [9] in quantum mechanics, magnetohydrodynamics
(MHD) [10, 11] equations in plasma physics, Stokes equations [12], Euler equations [13, 14] and
Navier-Stokes equations [15–17] in fluid dynamics and many more.

These equations can be broken down into two types of relations, constitutive relations and
topological relations. Constitutive relations are also called constitutive laws. A typical consti-
tutive relation describes the relation between two variables connected by a material parameter.
Such a relation essentially is a scientific hypothesis and can only be verified to a certain degree
through experiments. While a topological relation usually refers to a conservation law which
is considered to be a fundamental law of nature. We take the Poisson equation as an exam-
ple. The Poisson equation arises in many subjects, like fluid dynamics [18], heat transfer [19],
electromagnetism [20], gravity [21], etc. It is an elliptic partial differential equation of the form

−∇ · (k∇ϕ) = f,

where ϕ and f are both scalar fields and k refers to a material property. If we introduce
an intermediate variable u = k∇ϕ, the Poisson equation can be broken down into a mixed
formulation written as

u = k∇ϕ,
∇ · u = −f.

If the Poisson equation is used to model a heat diffusion, the first relation, namely the gradient
relation, then represents a constitutive law, Fourier’s law, which relates the heat flux u to the
temperature ϕ subject to a material property k, the thermal conductivity of the material. And
the second relation, the divergence relation, simply implies the fundamental conservation law of
energy, i.e., that the local net heat flux must be equal to the heat generated or absorbed by the
source term, f . As a second example, if the Poisson equation models a potential flow in porous
medium, the gradient relation then represents a constitutive relation — Darcy’s law which
relates the flow velocity field, u, to the flow potential, ϕ, subject to a material property k, the
permeability of the medium. And the divergence relation reflects the fundamental conservation
law of mass stating that the local net mass flux is equal to the mass generated or absorbed by the
source term, f . In practice, a constitutive relation may already contain a certain amount of error.
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For instance, the measurement of the thermal conductivity of a material or the permeability of
a porous medium comes with a certain measurement error. However, the topological relation
which stands for the topological essence of physics does not contain such an error. Apart from the
constitutive and topological relations, there are other structures, like symmetries and invariants,
embedded in PDEs.

For a particular problem, it is generally difficult to find the analytical solutions of the PDEs.
An alternative approach is doing a simulation with a numerical method to find an approximate
solution [22, 23]. Common numerical methods can be classified into finite difference methods
(FDM) [8,24], finite volume methods (FVM) [15,25] and finite element methods (FEM) [26–30].
For example, given a well-posed Poisson problem in a porous medium, using the conventional
first order finite element method, we can find a numerical solution of the velocity field u, denoted
by uh, i.e.,

uh ≈ u,

which is a linear combination of piece-wise linear functions. However, if we check the conservation
of mass for the numerical solution uh, we will find that it is only satisfied approximately, i.e.,

∇ · uh ≈ 0,

where we have assumed that there is no source term anywhere, namely f = 0. The exact
conservation of mass, ∇ · uh = 0, can only be approached when we refine the simulation to the
limit, which is not feasible because of the limited computational power. We can interpret this
by saying that artificial mass is generated during the numerical simulation. In other words, the
structure which prevents the unphysical artificial mass, the conservation of mass embedded by
the relation ∇ · u = 0, is not preserved by the numerical method.

Besides methods like the aforementioned conventional finite element method which fail to
maintain these structures of PDEs in the solutions, there are numerical methods designed to
take one or some structures as strong constraints such that they can be strictly satisfied by the
solutions. Such methods are called structure-preserving or mimetic methods. The feature of
being structure-preserving leads to extra physical compatibility, and also benefits the method
generally in the aspects of accuracy and, more importantly, stability [31]. Therefore, structure-
preserving methods have become a research topic of great interest. Among the various structure-
preserving methods, there is the mimetic spectral element method (MSEM) [32–34], an arbitrary-
order structure-preserving method.

Complement 1.1 Complements are provided at
[PhD thesis complements (ptc)] www.mathischeap.com/contents/LIBRARY/ptc.
They serve as a library and contain additional material such as instructions and well-
documented scripts that could help readers (especially the new researchers) to better under-
stand the MSEM and its extensions and to more quickly build their own efficient programs.

1.1 A literature study of structure-preserving methods
Back in the 1960s, methods which employ staggered meshes were proposed. Among them there
are the method proposed by Harlow and Welch [35] and the Smagorinsky-Lilly method firstly
introduced by Smagorinsky [36] and then developed by Lilly [37]. These methods discuss the
conservation and mathematical properties of the problems and could be considered as the original
mimetic methods.

In the 1970s, Tonti [38–41] introduced a classification scheme for the basic physical quanti-
ties and theories and revealed the analogies between algebraic topology [42, 43] and differential

https://www.mathischeap.com/contents/LIBRARY/ptc.html
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geometry [44–47]. In this scheme, physical variables are associated with not only points but also
other elementary geometric elements of higher dimensions, such as lines, surfaces and volumes.
In algebraic topology, more specifically the theory of cell-complexes, these geometric elements
are called k-cells with k being the dimension of the geometric elements. On a grid, the num-
bered and oriented k-cells form a k-chain. The association between a k-chain and a k-cochain
which can be regarded as the degrees of freedom of a discrete differential k-form then can be
established [48]. Tonti’s work, from a more geometric point of view, gives a novel and robust
tool to understand different physical theories, to analyze the mathematical structure embedded
in them and to design numerical methods, especially structure-preserving methods [49].

Before the work of Tonti, Whitney formulated an interpolation between flat cochains and
differential forms for a proof in his geometric integration theory [50]. These forms initially
were not used for numerical methods until Dodziuk [51] generalized these ideas onto manifolds,
named them Whitney forms, and used them in a finite difference approach to the Hodge theory
of harmonic forms in 1974 [52]. Around the same time, in the field of finite element methods, a
new branch called mixed finite element methods was proposed and developed by Brezzi, Raviart,
Thomas, Nédélec, Douglas et al., [53–57]. These newly developed mixed elements turn out to
be closely related to the Whitney forms [58, 59]. For this reason Whitney forms, in a finite
element setting, are also called Whitney elements which were then used in the field of compu-
tational electromagnetics by Bossavit in the late 1980s [60–62]. Instead of conventional scalar
and vector fields used in the mixed finite element methods, Bossavit used differential forms for
the description and numerical modeling of physics, which was a great success and promoted the
use of differential forms and Whitney forms in other fields. Bossavit’s work in computational
electromagnetics is also recognized as a pioneering work in the structure-preserving or mimetic
discretization community, and Whitney forms are also gradually known as finite elements for
differential forms [52]. For more recent developments, we highlight the work on higher order
Whitney forms [63,64] and on Whitney forms for various cell shapes [65].

Although Tonti’s work shares some similar ideas with Whitney forms (and mixed elements)
and partly contributed to Bossavit’s work [66–70], by the early 1990s, Whitney forms (and mixed
elements) had become much more popular than Tonti’s work, unjustly as Bossavit said in [71].
Attempts were made to merge them in the same paper. Nevertheless, it is undeniable that both
of them are important and useful tools for structure-preserving or mimetic methods.

The terminology mimetic discretization became well-known since the development of the
mimetic finite difference (MFD) method. The method was called to be mimetic as it mimics
some fundamental properties of mathematical and physical systems [72]. Driven by the idea that
the discrete differential operators, such as gradient, curl and divergence, should be conservative
such that they preserve some properties, like standard vector identities, symmetry, positive
definiteness, of their continuous counterparts, Hyman and Scovel [73] proposed a mimetic finite
difference approach based on the analogies between algebraic topology and differential forms
in 1988. Later, a complete framework for the mimetic finite difference method was gradually
established from the middle 1990s by Hyman, Shashkov, Lipnikov, Steinberg et al., see for
example [74–79]. We emphasize [72] for a comprehensive review on the mimetic finite difference
method. The virtual element method [80], a close variation of the mimetic finite difference
method, can also be classified into this framework. For more application-oriented work on the
mimetic finite difference method, we refer to, for example, [81, 82].

The popularity of exploring the usage of algebraic topology and differential forms for mimetic
discretizations reached another level from the early 2000s. In the work of Bochev and Hy-
man [83], a more general framework that could be used to guide the development of mimetic
discretization in any of finite difference, finite volume and finite element settings was constructed
by extending the early work of Hyman and Scovel [73]. At the kernel of this framework, there
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are two basic operations, the reduction and the reconstruction. On a domain of dimension n,
the reduction operation maps differential k-forms (k ≤ n) onto k-cochains. These k-cochains
are associated to k-chains which are part of a cell complex that tessellates the domain. The re-
construction operation, as a right inverse of the reduction, reconstructs the discrete differential
k-forms from the k-cochains. Discrete operators like discrete inner product and discrete Hodge
operator depend on the reconstruction, and, thus, for various choices of the reconstruction,
different mimetic methods can arise.

In the same period, a mimetic discretization theory called the discrete exterior calculus
(DEC) was developed by Hirani, Desbrun, Marsden et al. [84–87]. Sharing close ideas with
the mimetic framework proposed by Bochev and Hyman, for example, in the sense of discrete
operators, such as exterior derivative, codifferential and Hodge operator, the DEC provides a
more geometric approach to address the topic. For a fully mimetic discrete vector calculus, we
refer to the work of Robidoux and Steinberg [88]. For more investigations of mimetic methods
in unstructured meshes, we refer to the work of Perot and his co-authors [89,90].

Another important contribution called the finite element exterior calculus (FEEC) was made
by Arnold, Falk and Winther [91–94] which forms an excellent foundation for the combination
of mimetic ideas and finite element methods. The mimetic ideas can also be implemented in the
mimetic isogeometric analysis, see for example the work of Evans, Hughes, Toshniwal and their
co-authors [95, 96]. More investigations on mimetic discretization in the finite element setting
include for example the work of Hiptmair [97, 98], Bonelle, Ern, Di Pietro et al., [99–101] and
the MSEM.

The MSEM (which will be introduced comprehensively in Chapter 2) proposed by Gerritsma,
Palha, Kreeft et al. [32–34] was inspired by many of the previously mentioned contributions
among which the mimetic framework proposed by Bochev and Hyman, the discrete exterior
calculus and the finite element exterior calculus are the most direct ones.

For more structure-preserving discretizations in various mathematical fields, see, for example,
the work of Hairer, Lubich and Wanner on geometric numerical integration [102–104], [105–107]
on mimetic variational approaches, and [108–111] on Hamiltonian systems.
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CHAPTER 2
MIMETIC SPECTRAL ELEMENT METHOD

In this chapter, we introduce the MSEM which was firstly introduced using the mathematical
language of differential forms, see [33, 34, 112]. Here we explain the method with the more
conventional mathematical language, vector calculus, to provide another way of understanding
the method for a larger audience.

For various applications of the MSEM, we refer to, for example, [3, 6, 12,14,17,113–119].

2.1 The Poisson problem
As explained in the introduction chapter, the Poisson problem arises in many branches of physics
and engineering, like fluid dynamics [18], heat transfer [19], electromagnetism [20], gravity [21],
etc. It is governed by the Poisson equation, an elliptic partial differential equation, of the strong
form1

−∇ · (k∇ϕ) = f,

where ϕ and f are both scalar fields and k refers to a material parameter. We consider a simply
connected, bounded domain Ω whose regular enough (Lipschitz continuous) boundary is denoted
by ∂Ω. The boundary ∂Ω is split into two parts, Γφ and Γu,

∂Ω = Γφ ∪ Γu, Γφ ∩ Γu = ∅, Γφ ̸= ∅.

Let the material parameter k and the scalar field f be known and boundary conditions ϕ = ϕ̂
and u · n = û be given on Γφ and Γu, respectively. Note that we use n to denote the outward
unit normal vector. If we introduce an auxiliary variable u = ∇ϕ, a well-posed Poisson problem
can be expressed in a mixed form,

u = k∇ϕ in Ω,(2.1a)
∇ · u = −f in Ω,(2.1b)
ϕ = ϕ̂ on Γφ(2.1c)
u · n = û on Γu.(2.1d)

1This form is strong in the sense that we have not applied any restriction to the spaces that the variables
belong to.
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Note that when Γφ = ∅, this problem is not well-posed. There is a singular mode in (2.1a). For
example, if ϕ′ solves the problem, ϕ = ϕ′ + C, where C is an arbitrary constant2, also solves
the problem.

2.2 The de Rham structure
2.2.1 Function spaces
We start with some basic concepts of Sobolev spaces [27,120,121] on which the de Rham complex
will be built. The fundamental Sobolev space we will use in this chapter is the space of square
integrable functions,

L2(Ω) := {ϕ |⟨ϕ,ϕ⟩Ω < +∞} ,

where ⟨·, ·⟩Ω denotes the L2-inner product (or simply inner product), i.e.,

⟨a, b⟩Ω :=

∫
Ω
ab dΩ and ⟨c,d⟩Ω :=

∫
Ω
c · d dΩ,

if a, b are scalar fields and c, d are vector fields in Ω.

Complement 2.1 For an instruction of evaluating the integration numerically, see script
[quadrature.py] www.mathischeap.com/contents/LIBRARY/ptc/quadrature.

The space H1(Ω), a subspace of the L2(Ω), is defined as

H1(Ω) :=
{
ψ
∣∣ψ ∈ L2(Ω),∇ψ ∈

[
L2(Ω)

]n}
,

where we have used n to denote the dimensions of the space. If Ω is a sub-domain of R2 (n = 2),
we know that the curl of a scalar field gives a vector field, and we distinguish it from the
rotation operator which works on a vector and gives a scalar. Therefore, we define H(curl; Ω)
and H(rot; Ω) in R2 as

H(curl; Ω) :=

{
φ

∣∣∣∣∣φ ∈ L2(Ω),∇× φ =

[
∂φ

∂y
−∂φ
∂x

]T
∈
[
L2(Ω)

]2}
,

H(rot; Ω) :=

{
v

∣∣∣∣v =
[
v1 v2

]T ∈
[
L2(Ω)

]2
,∇× v =

∂v2
∂x

− ∂v1
∂y

∈ L2(Ω)

}
.

Note that we have used ∇× to denote both rotation and curl operators and we can identify
which operator it is by checking the type (scalar or vector) of the object it is working on. In R3,
curl and rotation operators are equivalent. Thus

H(curl; Ω) = H(rot; Ω) :=
{
v
∣∣∣v ∈

[
L2(Ω)

]3
,∇× v ∈

[
L2(Ω)

]3}
.

Analogously, we can define the space H(div; Ω):

H(div; Ω) :=
{
u
∣∣u ∈

[
L2(Ω)

]n
,∇ · u ∈ L2(Ω)

}
.

The trace operator, denoted by T , restricts a function defined in Ω to its boundary. In R3,
we consider the following trace spaces. The H1/2(∂Ω) space, a subspace of L2(∂Ω), is the range

2More generally, C can be an arbitrary scalar field such that ∇C = 0.

https://www.mathischeap.com/contents/LIBRARY/ptc/quadrature.html
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(or image) of the trace operator on H1(Ω), i.e.,

H1/2(∂Ω) :=
{
ψ̂
∣∣∣∃ψ ∈ H1(Ω), ψ̂ = Tψ on ∂Ω

}
.

Its dual space H−1/2(∂Ω) is defined as the range of the trace operator on H(div; Ω),

H−1/2(∂Ω) := { û| ∃u ∈ H(div; Ω), û = Tu = u · n on ∂Ω} .

For H(curl; Ω), we consider two trace operators, T∥ and T⊥ and the corresponding traces spaces
are defined as

TH∥(∂Ω) :=
{
ω̂| ∃ω ∈ H(curl; Ω), ω̂ = T∥ω = n× (ω × n) on ∂Ω

}
,

TH⊥(∂Ω) := { ω̂| ∃ω ∈ H(curl; Ω), ω̂ = T⊥ω = ω × n on ∂Ω} .

The vector n× (ω × n) is the component of ω parallel to the tangent plane of ∂Ω, and we have

(2.2) ω = n× (ω × n) + (ω · n)n

with (ω · n)n being the component of ω perpendicular to the tangent plane. The vector ω×n
is also parallel to the tangent plane and is perpendicular to ω and n×(ω × n) because the cross
product of two vectors is perpendicular to either vector, i.e.,

(2.3) (a× b) ⊥ a and (a× b) ⊥ b.

See Fig. 2.1 for an illustration of the decomposition of ω ∈ H(curl; Ω) on the domain boundary.
Trace spaces TH∥(∂Ω) and TH⊥(∂Ω) are also a pair of dual spaces. And for more information
on the trace spaces, we refer to, for example, [122,123].

Figure 2.1: An illustration of the decomposition of ω ∈ H(curl; Ω) on the domain boundary.

2.2.2 The de Rham complex
The de Rham complex formally is a concept in differential geometry [31,83,124–127]. It is a se-
quence of differential k-form spaces, Λk(Ω), unidirectionally connected by the exterior derivative,
d. A generalized form of the de Rham complex is given as

(2.4) 0 ↪→ Λ0(Ω)
d−→ Λ1(Ω)

d−→ · · · d−→ Λn(Ω) −→ 0.
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In terms of Sobolev spaces, the de Rham complex has different forms in different dimensions:

• In R1, we have
0 ↪→ H1(Ω)

∇−→ L2(Ω) → 0,

0 ↪→ H(div; Ω)
∇·−→ L2(Ω) → 0,

where in this case H1(Ω) = H(div; Ω) and both the gradient and the divergence operators
refer to the derivative operator, d. Note that, see (2.4), we have also used the notation d
to express the exterior derivative for differential forms.

• In R2, we have
0 ↪→ H1(Ω)

∇−→ H(rot; Ω)
∇×−→ L2(Ω) → 0,

0 ↪→ H(curl; Ω)
∇×−→ H(div; Ω)

∇·−→ L2(Ω) → 0.

• In R3, the de Rham complex is of the form,

(2.5) 0 ↪→ H1(Ω)
∇−→ H(curl; Ω)

∇×−→ H(div; Ω)
∇·−→ L2(Ω) → 0.

Such a complex implies that the range of an operator is a subspace of the next space, to be
more exact, is a subspace of the null space of the next space with respect to the next operator.
Recall the fact that ∇×∇(·) ≡ 0 and ∇ ·∇× (·) ≡ 0. A visualization of the de Rham complex
in R3, (2.5), is shown in Fig. 2.2.

Figure 2.2: A visualization of the de Rham complex of Sobolev spaces in R3.

We call the first order differential operators, ∇, ∇× and ∇·, the primal differential operators
or simply primal operators and call the corresponding complexes, for example, (2.5), the primal
de Rham complexes. The primal operators are topological operators and the MSEM will preserve
the topological structure of them at the discrete level, which will be explained later in this
chapter.



2.2. THE DE RHAM STRUCTURE 9

2.2.3 Double de Rham complex
To introduce the double de Rham complex, we restrict ourselves to R3 as an example.

In terms of the L2-inner product, integration by parts with respect to the primal divergence
operator induces an adjoint operator of it. The adjoint operator is defined as

(2.6) ∇̃ : L2(Ω) → H(div; Ω),

such that

(2.7)
〈
v, ∇̃ϕ

〉
Ω
= −⟨∇ · v, ϕ⟩Ω +

∫
∂Ω
ϕ (v · n) dΓ ∀v ∈ H(div; Ω).

This adjoint operator, ∇̃, is called the dual gradient operator.
As for the primal curl operator, integration by parts in terms of the inner product induces

an adjoint operator defined as

(2.8) ∇̃× : H(div; Ω) → H(curl; Ω),

such that

(2.9)
〈
ω, ∇̃ × u

〉
Ω
= ⟨∇ × ω,u⟩Ω −

∫
∂Ω

ω · (u× n)dΓ ∀ω ∈ H(curl; Ω).

Note that on the boundary ω · (u×n) =
(
T∥ω

)
· (u×n) as the perpendicular component of ω,

(ω · n)n, does not contribute to this dot product, i.e., (ω · n)n ⊥ u × n, see (2.2) and (2.3).
And we call this adjoint operator, ∇̃×, the dual curl operator.

Analogously, integration by parts with respect to the primal gradient operator induces an
adjoint operator defined as

(2.10) ∇̃· : H(curl; Ω) → H1(Ω),

such that

(2.11)
〈
ψ, ∇̃·ω

〉
Ω
= −⟨∇ψ,ω⟩Ω +

∫
∂Ω
ψ(ω · n)dΓ ∀ψ ∈ H1(Ω).

We call this adjoint operator, ∇̃·, the dual divergence operator.

Remark 2.1 Performing the dual operators can be done by computing the corresponding primal
operators employing integration by parts. It will also need the assistance of the additional trace
variable for the boundary integral. For example, in (2.7), since ϕ ∈ L2(Ω), it does not admit a
trace operator. Thus

ϕ|∂Ω ∈ H1/2(∂Ω)

has to be an additional boundary variable provided for the calculation of the dual gradient
operator. Similarly, in (2.9) and (2.11), u ∈ H(div; Ω) and ω ∈ H(curl; Ω) do not admit trace
operators T⊥ and T respectively. That is to say, boundary variables

u× n ∈ TH⊥(∂Ω) and ω · n ∈ H−1/2(∂Ω)
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need to be provided for computing the dual curl and divergence operators, respectively. Therefore,
more precise expressions, instead of (2.6), (2.8) and (2.10), for the dual operators are

∇̃ : L2(Ω)×H1/2(∂Ω) → H(div; Ω),

∇̃× : H(div; Ω)× TH⊥(∂Ω) → H(curl; Ω),

∇̃· : H(curl; Ω)×H−1/2(∂Ω) → H1(Ω).

As they do not impact the introduction of the MSEM, we temporally leave them as shown in
(2.6), (2.8) and (2.10) for neatness. This is also the case when the MSEM was initially proposed.

With these dual operators, we can extend the primal de Rham complex, (2.5), to a double
de Rham complex as shown in Fig. 2.3. The L2-inner product is metric-dependent and we will
see later in this chapter that in the MSEM we perform the dual operator through integration
by parts in terms of the L2-inner product.

R � � // H1(Ω)
∇ //

OO

��

H(curl; Ω)
∇×

//
OO

��

H(div; Ω)
∇· //

OO

��

L2(Ω) //
OO

��

0

0 H1(Ω)oo H(curl; Ω)
∇̃·oo H(div; Ω)

∇̃×
oo L2(Ω)

∇̃oo R? _oo

Figure 2.3: The double de Rham complex in R3. The upper branch is the primal de Rham complex
and the lower branch is called the dual de Rham complex. Note that we have omitted the trace spaces in
the dual de Rham complex, see Remark 2.1.

2.2.4 de Rham structure of the Poisson problem
In this section, we use the double de Rham complex to analyze the Poisson equations (2.1). If we
select ϕ ∈ H1(Ω), we will have u = k∇ϕ ∈ H(curl; Ω) with the gradient operator being a primal
operator. This implies that the operator working on u in (2.1b) must be a dual divergence
operator, see Fig. 2.3. Thus, original equations (2.1a) and (2.1b) can be expressed as a weak
form3: For (u, ϕ) ∈ H(curl; Ω)×H1(Ω),

u = k∇ϕ in Ω,(2.12a)
∇̃·u = −f in Ω.(2.12b)

Alternatively, we can take the divergence operator as a primal operator and take the gradient
operator as a dual one. As a result, the original equations (2.1a) and (2.1b) can be expressed
as the following weak form: (u, ϕ) ∈ H(div; Ω)× L2(Ω)

u = k∇̃ϕ in Ω,(2.13a)
∇ · u = −f in Ω.(2.13b)

These interpretations reflect two particular structures, see Fig. 2.4, in the double de Rham
complex.

For the MSEM, we prefer to use the right de Rham structure of Fig. 2.4 which takes the
gradient operator as a dual operator and takes the divergence operator as the primal one. This

3It is a weak form in the sense that we have restrict u and φ to particular spaces that do not contain all scalars
or vectors.



2.2. THE DE RHAM STRUCTURE 11

// H1(Ω)
∇ //

OO

��

H(curl; Ω) //

k
��

H1(Ω)oo H(curl; Ω)
∇̃·oo oo

// H(div; Ω)
∇· //

OO

k

L2(Ω) //
O O

� �

H(div; Ω)oo L2(Ω)
∇̃oo oo

Figure 2.4: Two de Rham structures of the Poisson problem. The interpretation (2.12) reflects the left
structure while the interpretation (2.13) reflects the right structure.

is because that including the material parameter will need the help of metric terms (which will
be explained later in this chapter). Thus in this way the topological structure of the divergence
relation which stands for a fundamental conservation law can be preserved at the discrete level
by the MSEM.

It does not mean that the left de Rham structure in Fig. 2.4 is not applicable for the MSEM.
We can still use it. However, the resulting discretization is less preferable because we will
setup a topological discretization for the constitutive relation but introduce metric terms for the
discretization of the topological relation.

Using the right de Rham structure of Fig. 2.4, we now can rewrite the Poisson problem
(2.1) in a weak form with Sobolev spaces as follows: Given f ∈ L2(Ω), boundary conditions
ϕ̂ ∈ H1/2(Γφ) and û ∈ H−1/2(Γφ), find (u, ϕ) ∈ H(div; Ω)× L2(Ω) such that

u = k∇̃ϕ in Ω,(2.14a)
∇ · u = −f in Ω,(2.14b)
ϕ = ϕ̂ on Γφ,(2.14c)
u · n = û on Γu.(2.14d)

2.2.5 A weak formulation of the Poisson problem
If we test (2.14a) with test function v ∈ H0(div; Ω),

H0(div; Ω) := {v |v ∈ H(div; Ω), v · n = 0 on Γu } ,

and test (2.14b) with test function φ ∈ L2(Ω), applying integration by parts (2.7) to the dual
gradient term, we can obtain the following weak formulation of the problem (2.14): Given f ∈
L2(Ω), boundary conditions ϕ̂ ∈ H1/2(Γφ) and û ∈ H−1/2(Γu), seek (u, ϕ) ∈ Hû(div; Ω)×L2(Ω)
such that 〈

v, k−1u
〉
Ω
+ ⟨∇ · v, ϕ⟩Ω =

∫
Γφ

ϕ̂ (v · n) ∀v ∈ H0(div; Ω),(2.15a)

⟨φ,∇ · u⟩Ω = −⟨φ, f⟩Ω ∀φ ∈ L2(Ω),(2.15b)

where the space Hû(div; Ω) is defined as

Hû(div; Ω) := {u |u ∈ H(div; Ω), u · n = û on Γu } .

For an alternative approach to obtain this weak formulation based on a constrained mini-
mization problem, we refer to, for example, [31, 117].
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2.3 Mimetic polynomials
So far, all analysis is conducted at the continuous level. In this section, we introduce the discrete
or finite dimensional function spaces to be used for the discretization with the MSEM.

The MSEM, as mentioned before, aims to preserve the de Rham structure at the discrete
level. In order to achieve so, it must use discrete function spaces which are able to form a
discrete de Rham complex. If there is a set of discrete functions spaces,

{G(Ω), C(Ω), D(Ω), S(Ω)} ,

such that

(2.16) ,

we say that they constitute a discrete de Rham complex, see Fig. 2.2, and call these spaces a
set of mimetic or structure-preserving spaces.

There are multiple particular sets of mimetic spaces. One well-known choice is to employ
G(Ω) = CGN , C(Ω) = NED1

N , D(Ω) = RTN , and S(Ω) = DGN−1, i.e.,

,

where CGN are the continuous Galerkin spaces of degree N , NED1
N are the Nédélec H(curl)-

conforming spaces of the first kind of degree N , see [55], RTN are the Raviart-Thomas spaces
of degree N , see [54, 55], and DGN−1 are the discontinuous Galerkin spaces of degree (N − 1).
Another possible set of mimetic spaces employing B-splines is used in the works by Hiemstra et
al. [114], Buffa et al. [128], Ratnani and Sonnendrücker [129] and Zhang et al. [130].

A third choice is the mimetic spaces which will be used in this chapter. In this section, we
will introduce the construction of these mimetic spaces. We will first introduce the construction
of them in the reference domain. Afterwards, transforming them from the reference domain to
general, orthogonal or curvilinear, domains will be explained. In the reference domain, they are
spaces of polynomials and thus are called the mimetic polynomial spaces. While in a general
domain, depending on the mapping, it is not guaranteed that they are spaces of polynomials.
And from now on, the general term, mimetic spaces, refer to these particular mimetic spaces in
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this chapter.

2.3.1 Lagrange polynomials and edge polynomials
In R1, the mimetic polynomials consist of the well-known Lagrange polynomials and the edge
polynomials [32]. For completeness, we start with a brief introduction of the Lagrange polyno-
mials. Let a set of nodes, {ξ0, ξ1, · · · , ξN}, partition the 1D reference domain, Iref = [−1, 1],

−1 = ξ0 < ξ1 < · · · < ξN = 1.

And throughout the thesis, we will use the Legendre-Gauss-Lobatto (LGL) nodes. The Lagrange
polynomials,

li(ξ) :=

N∏
j=0,j ̸=i

ξ − ξj
ξi − ξj

, i ∈ {0, 1, · · · , N} ,

are polynomials of degree N which satisfy a nodal Kronecker delta property expressed as

(2.17) li(ξj) = δij =

{
1 if i = j

0 else
.

The edge polynomials of degree (N − 1), ei(ξ), are linear combinations of the derivatives of the
Lagrange polynomials, i.e.,

(2.18) ei(ξ) :=
N∑
j=i

dlj(ξ)

dξ
= −

i−1∑
j=0

dlj(ξ)

dξ
, i ∈ {1, 2, · · · , N} ,

which satisfy an integral Kronecker delta property expressed as

(2.19)
∫ ξj

ξj−1

ei(ξ)dξ = δij .

Examples of Lagrange polynomials and edge polynomials are shown in Fig. 2.5.

−1.0 −0.5 0.0 0.5 1.0
ξ

0.0

0.5

1.0

li
(ξ

)

−1.0 −0.5 0.0 0.5 1.0
ξ

−2

0

2

4

ei
(ξ

)

Figure 2.5: Lagrange polynomials (left) and edge polynomials (right) derived from a partition of degree
4, −1 = ξ0 < ξ1 < · · · < ξ4 = 1. The vertical gray dashed lines indicate the internal nodes, ξ1, ξ2, ξ3.
The nodal Kronecker delta property (2.17) is obvious. The integral Kronecker delta property (2.19) can
be seen, for example, from the edge polynomial e2(ξ) (orange solid line). Direct calculations will reveal
that

∫ ξ2
ξ1
e2(ξ)dξ = 1 and

∫ ξj
ξj−1

e2(ξ)dξ = 0, j ∈ {1, 3, 4}.
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Complement 2.2 For a Python implementation of Lagrange polynomials and edge poly-
nomials in the 1D reference domain, see the script
[Lagrange_and_edge_polynomials.py]
www.mathischeap.com/contents/LIBRARY/ptc/Lagrange_and_edge_polynomials.

In Iref , the Lagrange polynomials span a discrete polynomial space denoted by LPN (Iref),
i.e.,

LPN (Iref) := span
({
l0(ξ), l1(ξ), · · · , lN (ξ)

})
,

and the edge polynomials span a discrete polynomial space denoted by EPN−1(Iref), i.e.,

EPN−1(Iref) := span
({
e1(ξ), e2(ξ), · · · , eN (ξ)

})
.

※ Polynomials in spaces LPN (Iref) and EPN−1(Iref) are of the following forms.

• A polynomial ph ∈ LPN (Iref) is of the form

ph(ξ) =

N∑
i=0

pil
i(ξ),

where pi ∈ R are the expansion coefficients (degrees of freedom) of the polynomial.
And, from the nodal Kronecker delta property (2.17), it is easy to find

(2.20) ph(ξi)
(2.17)
= pi.

• A polynomial qh ∈ EPN−1(Iref) is of the form

qh(ξ) =
N∑
i=1

qie
i(ξ),

where qi ∈ R are the expansion coefficients of the polynomial. From the integral
Kronecker delta property (2.19), we know

(2.21)
∫ ξi

ξi−1

qh(ξ)dξ
(2.19)
= qi.

If, for ph ∈ LPN (Iref) and qh ∈ EPN−1(Iref), the following relation holds,

(2.22) qh(ξ) =
dph(ξ)

dξ
,

we integrate qh over line segments [ξi−1, ξi], and, using the first fundamental theorem of calculus
and relations (2.20) and (2.21), we can find that

(2.23) qi = pi − pi−1, i ∈ {1, 2, · · · , N} .

https://www.mathischeap.com/contents/LIBRARY/ptc/Lagrange_and_edge_polynomials.html
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This suggests a discrete counterpart for the derivative operator. Let us collect the expansion
coefficients of ph and qh, and put them in column vectors denoted by p and q, i.e.,

p :=
[
p0 p1 · · · pN

]T and q :=
[
q1 q2 · · · pN

]T
.

Note that this convention, using underlined symbols to denote column vectors of expansion
coefficients, will be used throughout the chapter. From (2.23), we can find that there is a linear
operator, the so-called incidence matrix, E, such that

(2.24) q = Ep,

where the incidence matrix E is an N by (N+1) sparse (only if N > 1) matrix with two nonzero
entries, E|i,i−1 = −1 and E|i,i = 1, per row. For example, if N = 4, we have

E =


−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 .
The incidence matrix E is a topological matrix; it contains −1, +1 and 0 and only depends on
the topology of the grid. For example, if we use a different set of nodes, −1 = ξ0 < ξ′1 < ξ′2 <
· · · < ξ′N−1 < ξN = 1, although the resulting Lagrange polynomials and edge polynomials will
be different, the relation (2.23) remains the same. This means the incidence matrix E will be
the same. Also note that (2.23) is exact, which implies that E is an exact discrete counterpart of
the derivative operator, see (2.22) and (2.24). In other words, it is a derivative operator applied
to the degrees of freedom.

Application of the derivative operator to a polynomial in LPN (Iref) thus can be done eas-
ily through applying the linear operator, E, to the column vector of expansion coefficients.
The resulting column vector contains the expansion coefficients of the resulting polynomial in
EPN−1(Iref). Since such a process is valid for all polynomials in LPN (Iref), i.e.,

(2.25) dph ∈ EPN−1(Iref) ∀ph ∈ LPN (Iref),

we can conclude that the mimetic polynomial spaces LPN (Iref) and EPN−1(Iref) form a 1D
discrete de Rham complex,

R ↪→ LPN (Iref)
d−→ EPN−1(Iref) → 0,

where the derivative operator, d, has an exact discrete counterpart, the incidence matrix E.
Note that the subscripts, N and N − 1, indicate the degrees of the polynomials in the spaces.

2.3.2 Mimetic polynomials in the reference domain of R3

In R3 equipped with an orthogonal coordinate system (ξ, η, ς), consider the reference domain
Ωref = [−1, 1]3. Let three sets of nodes,{

ξ0, ξ1, · · · , ξNξ

}
,
{
η0, η1, · · · , ηNη

}
and {ς0, ς1, · · · , ςNς} ,

partition the interval [−1, 1], i.e., −1 = ξ0 < ξ1 < · · · < ξNξ
= 1, −1 = η0 < η1 < · · · < ηNη = 1

and −1 = ς0 < ς1 < · · · < ςNς = 1. Without the loss of generality, we use Nξ = Nη = Nς = N .
Based on these sets of nodes, we can construct the following 1D Lagrange polynomials and edge
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polynomials along three axes, {
l0(ξ), l1(ξ), · · · , lN (ξ)

}
,(2.26a) {

l0(η), l1(η), · · · , lN (η)
}
,(2.26b) {

l0(ς), l1(ς), · · · , lN (ς)
}
,(2.26c) {

e1(ξ), e2(ξ), · · · , eN (ξ)
}
,(2.26d) {

e1(η), e2(η), · · · , eN (η)
}
,(2.26e) {

e1(ς), e2(ς), · · · , eN (ς)
}
.(2.26f)

Node polynomials If we perform the tensor product to Lagrange polynomials (2.26a), (2.26b)
and (2.26c), we can obtain a set of polynomials,

(2.27)
{

llli,j,k(ξ, η, ς)
∣∣∣ i, j, k ∈ {0, 1, · · · , N}

}
,

where llli,j,k(ξ, η, ς) := li(ξ)lj(η)lk(ς). If we use the following notation to denote points

(2.28) Pl,m,n = (ξl, ηm, ςn), l,m, n ∈ {0, 1, · · · , N} ,

from (2.17), it is easy to see that these polynomials satisfy the nodal Kronecker delta property,

(2.29) llli,j,k(Pl,m,n) = li(ξl)l
j(ηm)lk(ςn) = δi,j,kl,m,n =

{
1 if i = l, j = m, k = n

0 else
.

We call these polynomials the basis node polynomials. The discrete space of node polynomials,
NPN (Ωref), is the space spanned by these basis node polynomials, i.e.,

(2.30) NPN (Ωref) := span
({

llli,j,k(ξ, η, ς)
∣∣∣ i, j, k ∈ {0, 1, · · · , N}

})
.

Edge polynomials Similarly, using the 1D Lagrange polynomials and edge polynomials, we
can construct following polynomials,{

elli,j,k(ξ, η, ς)
∣∣∣ i ∈ {1, 2 · · · , N} , j, k ∈ {0, 1, · · · , N}

}
,(2.31a) {

leli,j,k(ξ, η, ς)
∣∣∣ j ∈ {1, 2 · · · , N} , i, k ∈ {0, 1, · · · , N}

}
,(2.31b) {

llei,j,k(ξ, η, ς)
∣∣∣ k ∈ {1, 2 · · · , N} , i, j ∈ {0, 1, · · · , N}

}
,(2.31c)

where we have used notations

elli,j,k(ξ, η, ς) := ei(ξ)lj(η)lk(ς),

leli,j,k(ξ, η, ς) := li(ξ)ej(η)lk(ς),

llei,j,k(ξ, η, ς) := li(ξ)lj(η)ek(ς).
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We introduce following notations for the edges,

Eξ
l,m,n := ([ξl−1, ξl] , ηm, ςn) ,(2.33a)

Eη
l,m,n := (ξl, [ηm−1, ηm] , ςn) ,(2.33b)

Eς
l,m,n := (ξl, ηm, [ςn−1, ςn]) .(2.33c)

For example, Eξ
l,m,n is the edge connecting the points Pl−1,m,n and Pl,m,n and Eη

l,m,n is the
edge connecting the points Pl,m−1,n and Pl,m,n. With the Kronecker delta properties (2.17) and
(2.19), we can find that polynomials in (2.31) satisfy line integral Kronecker delta properties
expressed as ∫

Eξ
l,m,n

elli,j,k(ξ, η, ς)dr =
∫ ξl

ξl−1

ei(ξ)dξ lj(ηm)lk(ςn) = δi,j,kl,m,n,(2.34a) ∫
Eη

l,m,n

leli,j,k(ξ, η, ς)dr = li(ξl)

∫ ηm

ηm−1

ej(η)dη lk(ςn) = δi,j,kl,m,n,(2.34b) ∫
Eς

l,m,n

llei,j,k(ξ, η, ς)dr = li(ξl)l
j(ηm)

∫ ςn

ςn−1

ek(ς)dς = δi,j,kl,m,n.(2.34c)

We call these polynomials the basis edge polynomials. The discrete space of edge polynomials4

(note the difference from the 1D edge polynomials, see (2.18)), denoted by EPN−1(Ωref), is the
space spanned by these basis edge polynomials, i.e.,

(2.35)

EPN−1(Ωref) : = span
({

elli,j,k(ξ, η, ς)
∣∣∣ i ∈ {1, 2 · · · , N} , j, k ∈ {0, 1, · · · , N}

})
× span

({
leli,j,k(ξ, η, ς)

∣∣∣ j ∈ {1, 2 · · · , N} , i, k ∈ {0, 1, · · · , N}
})

× span
({

llei,j,k(ξ, η, ς)
∣∣∣ k ∈ {1, 2 · · · , N} , i, j ∈ {0, 1, · · · , N}

})
.

Face polynomials It is also possible to construct polynomials,{
leei,j,k(ξ, η, ς)

∣∣∣ i ∈ {0, 1 · · · , N} , j, k ∈ {1, 2, · · · , N}
}
,(2.36a) {

elei,j,k(ξ, η, ς)
∣∣∣ j ∈ {0, 1 · · · , N} , i, k ∈ {1, 2, · · · , N}

}
,(2.36b) {

eeli,j,k(ξ, η, ς)
∣∣∣ k ∈ {0, 1 · · · , N} , i, j ∈ {1, 2, · · · , N}

}
,(2.36c)

using the 1D Lagrange polynomials and edge polynomials. And we have used notations

leei,j,k(ξ, η, ς) := li(ξ)ej(η)ek(ς),

elei,j,k(ξ, η, ς) := ei(ξ)lj(η)ek(ς),

eeli,j,k(ξ, η, ς) := ei(ξ)ej(η)lk(ς).

4We call them polynomials despite they are actually vectors of polynomials.



18 CHAPTER 2. MIMETIC SPECTRAL ELEMENT METHOD

We denote the following faces by

F ξ
l,m,n := (ξl, [ηm−1, ηm] , [ςn−1, ςn]) ,(2.38a)
F η
l,m,n := ([ξl−1, ξl] , ηm, [ςn−1, ςn]) ,(2.38b)
F ς
l,m,n := ([ξl−1, ξl] , [ηm−1, ηm] , ςn) ,(2.38c)

For example, F ξ
l,m,n is the face whose four corners are points Pl,m−1,n−1, Pl,m,n−1, Pl,m,n−1

and Pl,m,n. Analogously, with the Kronecker delta properties for the 1D polynomials, (2.17)
and (2.19), we can easily verify that these polynomials satisfy the following surface integral
Kronecker delta properties,∫

F ξ
l,m,n

leei,j,k(ξ, η, ς)dΓ = li(ξl)

∫ ηm

ηm−1

ej(η)dη

∫ ςn

ςn−1

ek(ς)dς = δi,j,kl,m,n,(2.39a) ∫
F η
l,m,n

elei,j,k(ξ, η, ς)dΓ =

∫ ξl

ξl−1

ei(ξ)dξ lj(ηm)

∫ ςn

ςn−1

ek(ς)dς = δi,j,kl,m,n,(2.39b) ∫
F ς
l,m,n

eeli,j,k(ξ, η, ς)dΓ =

∫ ξl

ξl−1

ei(ξ)dξ

∫ ηm

ηm−1

ej(η)dη lk(ςn) = δi,j,kl,m,n.(2.39c)

We call these polynomials the basis face polynomials. The discrete space of face polynomials5,
denoted by FPN−1(Ωref), is the space spanned by these basis face polynomials, i.e.,

(2.40)

FPN−1(Ωref) : = span
({

leei,j,k(ξ, η, ς)
∣∣∣ i ∈ {0, 1 · · · , N} , j, k ∈ {1, 2, · · · , N}

})
× span

({
elei,j,k(ξ, η, ς)

∣∣∣ j ∈ {0, 1 · · · , N} , i, k ∈ {1, 2, · · · , N}
})

× span
({

eeli,j,k(ξ, η, ς)
∣∣∣ k ∈ {0, 1 · · · , N} , i, j ∈ {1, 2, · · · , N}

})
.

Volume polynomials If we perform the tensor product to the 1D edge polynomials in (2.26d),
(2.26e) and (2.26f), we can get the following polynomials,

(2.41)
{

eeei,j,k(ξ, η, ς)
∣∣∣ i, j, k ∈ {1, 2, · · · , N}

}
,

where eeei,j,k(ξ, η, ς) := ei(ξ)ej(η)ek(ς). The following notation is used to denote the volumes

(2.42) Vl,m,n := ([ξl−1, ξl] , [ηm−1, ηm] , [ςn−1, ςn]) ,

See Complement 2.3 for an illustration of these volumes. Derived from the integral Kronecker
property of the 1D edge polynomials, (2.19), these polynomials satisfy a volume integral Kro-
necker delta property expressed as

(2.43)
∫
Vl,m,n

eeei,j,k(ξ, η, ς)dV =

∫ ξl

ξl−1

ei(ξ)dξ

∫ ηm

ηm−1

ej(η)dη

∫ ςn

ςn−1

ek(ς)dς = δi,j,kl,m,n.

5We call them polynomials despite they are actually vectors of polynomials.
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We call them the basis volume polynomials. They span a discrete space of volume polynomials,
denoted by VPN−1(Ωref),

(2.44) VPN−1(Ωref) := span
({

eeei,j,k(ξ, η, ς)
∣∣∣ i, j, k ∈ {1, 2, · · · , N}

})
.

Complement 2.3 For an illustration of the distribution of the geometric objects to which
the polynomials are related through Kronecker properties (2.29), (2.34), (2.39) and (2.43),
see document [geometries_and_distribution.pdf]
www.mathischeap.com/contents/LIBRARY/ptc/geometries_and_distribution.

※ Discrete polynomials in spaces NPN (Ωref), EPN−1(Ωref), FPN−1(Ωref) and VPN−1(Ωref)
are of the following forms.

• A node polynomial ψh ∈ NPN (Ωref) is of the form

ψh(ξ, η, ς) =

N∑
i=0

N∑
j=0

N∑
k=0

Ψi,j,kllli,j,k(ξ, η, ς),

where Ψi,j,k ∈ R are the expansion coefficients of the node polynomial. And we know,
from the Kronecker delta property (2.29), that

(2.45) ψh(Pl,m,n) =
N∑
i=0

N∑
j=0

N∑
k=0

Ψi,j,kllli,j,k(ξl, ηm, ςn)
(2.29)
= Ψl,m,n.

• An edge polynomial ωh ∈ EPN−1(Ωref) is of the form

ωh(ξ, η, ς) =



N∑
i=1

N∑
j=0

N∑
k=0

wξ
i,j,kelli,j,k(ξ, η, ς)

N∑
i=0

N∑
j=1

N∑
k=0

wη
i,j,kleli,j,k(ξ, η, ς)

N∑
i=0

N∑
j=0

N∑
k=1

wς
i,j,kllei,j,k(ξ, η, ς)


,

where wξ
i,j,k,w

η
i,j,k,w

ς
i,j,k ∈ R are the expansion coefficients of the edge polynomial.

From Kronecker delta properties (2.34), we know that∫
Eξ

l,m,n

ωh · dr =

∫
Eξ

l,m,n

N∑
i=1

N∑
j=0

N∑
k=0

wξ
i,j,kelli,j,k(ξ, η, ς)dr (2.34a)

= wξ
l,m,n,(2.46a)

∫
Eη

l,m,n

ωh · dr =

∫
Eη

l,m,n

N∑
i=0

N∑
j=1

N∑
k=0

wη
i,j,kleli,j,k(ξ, η, ς)dr (2.34b)

= wη
l,m,n,(2.46b)

∫
Eς

l,m,n

ωh · dr =

∫
Eς

l,m,n

N∑
i=0

N∑
j=0

N∑
k=1

wς
i,j,kllei,j,k(ξ, η, ς)dr (2.34c)

= wς
l,m,n.(2.46c)

https://www.mathischeap.com/contents/LIBRARY/ptc/geometries_and_distribution.html
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• A face polynomial uh ∈ FPN−1(Ωref) is of the form

uh(ξ, η, ς) =



N∑
i=0

N∑
j=1

N∑
k=1

uξi,j,kleei,j,k(ξ, η, ς)

N∑
i=1

N∑
j=0

N∑
k=1

uηi,j,kelei,j,k(ξ, η, ς)

N∑
i=1

N∑
j=1

N∑
k=0

uςi,j,keeli,j,k(ξ, η, ς)


,

where uξi,j,k, u
η
i,j,k, u

ς
i,j,k ∈ R are the expansion coefficients of the face polynomial. And

we know, from Kronecker delta properties (2.39), that∫
F ξ
l,m,n

uh · n dΓ =

∫
F ξ
l,m,n

N∑
i=0

N∑
j=1

N∑
k=1

uξi,j,kleei,j,k(ξ, η, ς)dΓ (2.39a)
= uξl,m,n,(2.47a)

∫
F η
l,m,n

uh · n dΓ =

∫
F η
l,m,n

N∑
i=1

N∑
j=0

N∑
k=1

uηi,j,kelei,j,k(ξ, η, ς)dΓ (2.39b)
= uηl,m,n,(2.47b)

∫
F ς
l,m,n

uh · n dΓ =

∫
F ς
l,m,n

N∑
i=1

N∑
j=1

N∑
k=0

uςi,j,keeli,j,k(ξ, η, ς)dΓ (2.39c)
= uςl,m,n.(2.47c)

• A volume polynomial fh ∈ VPN−1(Ωref) is of the form

fh(ξ, η, ς) =

N∑
i=1

N∑
j=1

N∑
k=1

fi,j,keeei,j,k(ξ, η, ς),

where fi,j,k ∈ R are the expansion coefficients of the volume polynomial. And we know,
from the Kronecker delta property (2.43), that

(2.48)
∫
Vl,m,n

fh dV =

∫
Vl,m,n

N∑
i=1

N∑
j=1

N∑
k=1

fi,j,keeei,j,k(ξ, η, ς)dV (2.43)
= fl,m,n.

Incidence matrix E(∇) Given ψh ∈ NPN (Ω) and ωh ∈ EPN−1(Ωref), if

(2.49) ωh = ∇ψh,

we integrate ωh along edges Eξ
i,k,j , E

η
i,k,j and Eς

i,k,j , and with the gradient theorem for line
integrals and properties (2.45) and (2.46), we can easily find that

wξ
i,j,k = Ψi,j,k −Ψi−1,j,k, i ∈ {1, 2, · · · , N} , j, k ∈ {0, 1, · · · , N} ,(2.50a)

wη
i,j,k = Ψi,j,k −Ψi,j−1,k, j ∈ {1, 2, · · · , N} , i, k ∈ {0, 1, · · · , N} ,(2.50b)

wς
i,j,k = Ψi,j,k −Ψi,j,k−1, k ∈ {1, 2, · · · , N} , i, j ∈ {0, 1, · · · , N} .(2.50c)
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We now number the expansion coefficients of ψh as

(2.51) Ψi+1+j(N+1)+k(N+1)2 = Ψi,j,k,

and number the expansion coefficients of ωh as

wi+jN+kN(N+1) = wξ
i,j,k,(2.52a)

wi+1+(j−1)(N+1)+kN(N+1)+N(N+1)2 = wη
i,j,k,(2.52b)

wi+1+j(N+1)+(k−1)(N+1)2+2N(N+1)2 = wς
i,j,k.(2.52c)

We call a numbering a local numbering if it relates an indexing to a sequence of increasing
positive integers, {1, 2, · · · , }. With the local numberings (2.51) and (2.52), we can summarize
(2.50) into an algebraic relation expressed as

(2.53) ω = E(∇)ψ,

where ψ :=
[
Ψ1 Ψ2 · · · Ψ(N+1)3

]T, ω :=
[
w1 w2 · · · w3N(N+1)2

]T and the linear operator
E(∇) is the incidence matrix of the gradient operator at the discrete level, see (2.49). For example,
if N = 1, the incidence matrix E(∇) is given as

(2.54) E(∇) =



−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 1
−1 0 1 0 0 0 0 0
0 −1 0 1 0 0 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 1
−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1



.

Incidence matrix E(∇×) Similarly, given ωh ∈ EPN−1(Ωref), uh ∈ FPN−1(Ωref) and

(2.55) uh = ∇× ωh,

if we integrate uh over faces F ξ
i,k,j , F

η
i,k,j and F ς

i,k,j , with the Stokes’ integral theorem and
properties (2.46) and (2.47), we will obtain

uξi,j,k = +wη
i,j,k−1 − wη

i,j,k − wς
i,j−1,k + wς

i,j,k, i ∈ {0, 1, · · · , N} , j, k ∈ {1, 2, · · · , N} ,(2.56a)

uηi,j,k = −wξ
i,j,k−1 + wξ

i,j,k + wς
i−1,j,k − wς

i,j,k, j ∈ {0, 1, · · · , N} , i, k ∈ {1, 2, · · · , N} ,(2.56b)

uςi,j,k = +wξ
i,j−1,k − wξ

i,j,k − wη
i−1,j,k + wη

i,j,k, k ∈ {0, 1, · · · , N} , i, j ∈ {1, 2, · · · , N} .(2.56c)
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If we apply a local numbering to the expansion coefficients of uh, for example,

ui+1+(j−1)(N+1)+(k−1)N(N+1) = uξi,j,k,(2.57a)
ui+jN+(k−1)N(N+1)+N2(N+1) = uηi,j,k,(2.57b)
ui+(j−1)N+kN2+2N2(N+1) = uσi,j,k,(2.57c)

the relations in (2.56) can be summarized as a linear algebra equality,

(2.58) u = E(∇×)ω,

where u :=
[
u1 u2 · · · u3N2(N+1)

]T is the column vector of the expansion coefficients of uh

and E(∇×) is the incidence matrix for the curl operator at the discrete level, see (2.55). For
example, if N = 1, the incidence matrix E(∇×) is given as

(2.59) E(∇×) =



0 0 0 0 1 0 −1 0 −1 0 1 0
0 0 0 0 0 1 0 −1 0 −1 0 1
−1 0 1 0 0 0 0 0 1 −1 0 0
0 −1 0 1 0 0 0 0 0 0 1 −1
1 −1 0 0 −1 1 0 0 0 0 0 0
0 0 1 −1 0 0 −1 1 0 0 0 0

 .

Incidence matrix E(∇·) For uh ∈ FPN−1(Ωref) and fh ∈ VPN−1(Ωref), if

(2.60) fh = ∇ · uh,

we integrate fh over volumes Vi,j,k and, with Gauss’ integral theorem and properties (2.47) and
(2.48), we will find that

(2.61) fi,j,k = uξi,j,k − uξi−1,j,k + uηi,j,k − uηi,j−1,k + uςi,j,k − uςi,j,k−1, i, j, k ∈ {1, 2, · · · , N} .

If we use the local numbering

(2.62) fi+(j−1)N+(k−1)N2 = fi,j,k,

and introduce the column vector f :=
[
f1 f2 · · · fN3

]T, we can summarize (2.61) into an
algebra relation,

(2.63) f = E(∇·)u,

where the incidence matrix E(∇·) is the incidence matrix for the divergence operator at the
discrete level, see (2.60). For example, if N = 1, the incidence matrix E(∇·) is a 1 by 6 matrix
given as

(2.64) E(∇·) =
[
−1 1 −1 1 −1 1

]
.
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Complement 2.4 For an illustration of local numberings (2.51), (2.52), (2.57) and (2.62),
see document [local_numberings.pdf]
www.mathischeap.com/contents/LIBRARY/ptc/local_numberings.

Complement 2.5 For a Python implementation of the basis node, edge, face and volume
polynomials under aforementioned local numberings, see script
[mimetic_basis_polynomials.py]
www.mathischeap.com/contents/LIBRARY/ptc/mimetic_basis_polynomials.

Complement 2.6 For a Python implementation and more examples of incidence matrices,
E(∇), E(∇×) and E(∇·), see script [incidence_matrices.py]
www.mathischeap.com/contents/LIBRARY/ptc/incidence_matrices.

Note that the local numberings are not unique; different local numberings will lead to different
incidence matrices (with row and column permutations) while the relations (2.53), (2.58) and
(2.63) still hold.

Like the incidence matrix E in R1, see (2.24), the incidence matrices E(∇), E(∇×) and E(∇·)
are also sparse (except for E(∇·) at N = 1, see (2.64)) and topological in the sense that they
only contain nonzero entries of −1 and 1 and only depend on N and the local numberings
regardless of the distribution of the nodes on which the mimetic polynomials are based. And since
(2.50), (2.56) and (2.61) are exact, incidence matrices E(∇), E(∇×) and E(∇·) are exact discrete
counterparts of gradient, curl and divergence operators applied to the expansion coefficients.
Following the same analysis as for (2.25), we can easily conclude that

∇ψh ∈ EPN−1(Ωref) ∀ψh ∈ NPN (Ωref),

∇× ωh ∈ FPN−1(Ωref) ∀ωh ∈ EPN−1(Ωref),

∇ · uh ∈ VPN−1(Ωref) ∀uh ∈ FPN−1(Ωref).

Thus we know the mimetic polynomial spaces

NPN (Ωref), EPN−1(Ωref), FPN−1(Ωref) and VPN−1(Ωref)

form a discrete de Rham complex,

,

where the primal operators, ∇, ∇× and ∇·, have exact discrete counterparts, the incidence
matrices, E(∇), E(∇×) and E(∇·). And because of the fact that ∇×∇(·) ≡ 0 and ∇ ·∇× (·) ≡ 0,
we must have

E(∇×)E(∇) ≡ 0 and E(∇·)E(∇×) ≡ 0.

One can easily check this using examples of incidence matrices in (2.54), (2.59) and (2.64), see

https://www.mathischeap.com/contents/LIBRARY/ptc/local_numberings.html
https://www.mathischeap.com/contents/LIBRARY/ptc/mimetic_basis_polynomials.html
https://www.mathischeap.com/contents/LIBRARY/ptc/incidence_matrices.html
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Complement 2.6. The subscripts, N and N − 1, refer to the overall degrees of the polynomials
in the spaces, and we call NPN (Ωref), EPN−1(Ωref), FPN−1(Ωref) and VPN−1(Ωref) a set of
mimetic polynomial spaces of degree N .

2.3.3 Mimetic basis functions in general domains of R3

So far we have introduced the construction of mimetic polynomials only in the reference element.
In this section, we will introduce how to construct mimetic basis functions in a general domain.

We consider a general domain Ω which can be obtained by transforming the reference domain
Ωref using a C1 diffeomorphism mapping Φ (both Φ and its inverse mapping, Φ−1 : Ω → Ωref

are C1 continuous),

(2.65) Φ : Ωref → Ω.

The mimetic basis functions in Ω can be constructed by transforming the mimetic polynomials
in the reference domain.

Remark 2.2 The indexing and the local numbering of the mimetic polynomials in the reference
domain will be inherited by the mimetic basis functions in Ω.

Coordinate transformation Let the general domain be equipped with a coordinate system
(x, y, z). A general form of the mapping (2.65) is expressed as

x = (x, y, z) = Φ(ξ, η, ς) = (Φx(ξ, η, ς),Φy(ξ, η, ς),Φz(ξ, η, ς)) .

Its Jacobian matrix J is given as

J :=


∂x

∂ξ

∂x

∂η

∂x

∂ς
∂y

∂ξ

∂y

∂η

∂y

∂ς
∂z

∂ξ

∂z

∂η

∂z

∂ς

 =
[
xξ xη xς

]
,

where we have introduced column vectors xξ, xη and xς . The Jacobian of the mapping is the
determinant of the Jacobian matrix, det (J ), and the metric matrix is

G =

g1,1 g1,2 g1,3
g2,1 g2,2 g2,3
g3,1 g3,2 g3,3

 = J TJ ,

where, to be more explicit,

gi,j =

3∑
l=1

J |l,i J |l,j , i, j ∈ {1, 2, 3} .

The metric matrix is symmetric and positive definite. The metric of the mapping is defined as
the determinant of the metric matrix and is equal to the square of the Jacobian,

g = det (G) = [det (J )]2 .
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And from the fact Φ−1 ◦ Φ : Ω → Ω, we know that J −1J = I, where I is the identity matrix.
The inverse Jacobian matrix, the Jacobian matrix of the inverse mapping, Φ−1 : Ω → Ωref , is

J −1 :=


∂ξ

∂x

∂ξ

∂y

∂ξ

∂z
∂η

∂x

∂η

∂y

∂η

∂z
∂ς

∂x

∂ς

∂y

∂ς

∂z

 =

∇xξ
∇xη
∇xς

 ,

where row vectors ∇xξ, ∇xη and ∇xς are

∇xξ :=
xT
η × xT

ς√
g

, ∇xη :=
xT
ς × xT

ξ√
g

, ∇xς :=
xT
ξ × xT

η√
g

.

The inverse Jacobian (determinant of the inverse Jacobian matrix) is the reciprocal of the
Jacobian,

det
(
J −1

)
=

1

det (J )
,

and the inverse metric matrix is expressed as

G−1 =

g1,1 g1,2 g1,3

g2,1 g2,2 g2,3

g3,1 g3,2 g3,3

 = J −1
(
J −1

)T
,

where, to be more explicit,

gi,j =
3∑

l=1

J −1
∣∣
i,l

J −1
∣∣
j,l
, i, j ∈ {1, 2, 3} .

The inverse metric matrix is also symmetric and positive definite. For a comprehensive intro-
duction on coordinate transformation, see for example [131].

Complement 2.7 For a Python implementation of computing these metric related values
and matrices of a given mapping, see script [coordinate_transformation.py]
www.mathischeap.com/contents/LIBRARY/ptc/coordinate_transformation.

Node basis functions Transforming a discrete node polynomial, ψh
0 ∈ NPN (Ωref), to Ω can

be conducted by
ψh(x, y, z) = ψh(Φ(ξ, η, ς)) = ψh

0 (ξ, η, ς).

If we apply this transformation to the basis node polynomials in the reference domain, we obtain
the following node basis functions,

llli,j,kΦ (x, y, z) = llli,j,kΦ (Φ(ξ, η, ς)) = llli,j,k(ξ, η, ς), i, j, k ∈ {0, 1, · · · , N} ,

in Ω. If we define points

(2.66) PΦ
l,m,n = Φ(Pl,m,n), l,m, n ∈ {0, 1, · · · , N} ,

https://www.mathischeap.com/contents/LIBRARY/ptc/coordinate_transformation.html
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where Pl,m,n are the points on which the node polynomials in the reference domain are con-
structed, see (2.28), we can easily find that the node basis functions llli,j,kΦ (x, y, z) satisfy the
Kronecker delta property expressed as

(2.67) llli,j,kΦ (PΦ
l,m,n) = δi,j,kl,m,n .

Spanned by these node basis functions, NPN (Ω) is the space of node functions in Ω, i.e.,

NPN (Ω) := span
({

llli,j,kΦ (ξ, η, ς)
∣∣∣ i, j, k ∈ {0, 1, · · · , N}

})
.

Edge basis functions Transforming a discrete edge polynomial, ωh
0 ∈ EPN−1(Ωref), to Ω can

be done as
ωh(x, y, z) = ωh(Φ(ξ, η, ς)) =

(
J −1

)T
ωh

0(ξ, η, ς).

If we apply this transformation to the basis edge polynomials in the reference domain, we obtain
a set of edge basis functions in Ω,

elli,j,kΦ (x, y, z) =
(
J −1

)T elli,j,k
(
Φ−1(x, y, z)

)
0
0

 , i ∈ {1, 2, · · · , N} , j, k ∈ {0, 1, · · · , N} ,

leli,j,kΦ (x, y, z) =
(
J −1

)T  0

leli,j,k
(
Φ−1(x, y, z)

)
0

 , j ∈ {1, 2, · · · , N} , i, k ∈ {0, 1, · · · , N} ,

llei,j,k
Φ (x, y, z) =

(
J −1

)T  0
0

llei,j,k
(
Φ−1(x, y, z)

)
 , k ∈ {1, 2, · · · , N} , i, j ∈ {0, 1, · · · , N} .

And if we define edges EΦ,ξ
l,m,n, EΦ,η

l,m,n and EΦ,ς
l,m,n as the mapped edges of Eξ

l,m,n, Eη
l,m,n and Eς

l,m,n,
see (2.33), i.e.,

EΦ,ξ
l,m,n := Φ(Eξ

l,m,n), l ∈ {1, 2 · · · , N} , m, n ∈ {0, 1, · · · , N} ,(2.68a)

EΦ,η
l,m,n := Φ(Eη

l,m,n), m ∈ {1, 2 · · · , N} , l, n ∈ {0, 1, · · · , N} ,(2.68b)

EΦ,ς
l,m,n := Φ(Eς

l,m,n), n ∈ {1, 2 · · · , N} , l,m ∈ {0, 1, · · · , N} ,(2.68c)

we will find that the edge basis functions satisfy Kronecker delta properties expressed as∫
EΦ,ξ

l,m,n

elli,j,kΦ · dr = δi,j,kl,m,n,

∫
EΦ,η

l,m,n

elli,j,kΦ · dr = 0,

∫
EΦ,ς

l,m,n

elli,j,kΦ · dr = 0,(2.69a) ∫
EΦ,ξ

l,m,n

leli,j,kΦ · dr = 0,

∫
EΦ,η

l,m,n

leli,j,kΦ · dr = δi,j,kl,m,n,

∫
EΦ,ς

l,m,n

leli,j,kΦ · dr = 0,(2.69b) ∫
EΦ,ξ

l,m,n

llei,j,k
Φ · dr = 0,

∫
EΦ,η

l,m,n

llei,j,k
Φ · dr = 0,

∫
EΦ,ς

l,m,n

llei,j,k
Φ · dr = δi,j,kl,m,n.(2.69c)

We use EPN−1(Ω) to denote the space of edge functions in Ω, i.e.,

EPN−1(Ω) :=

span
({

· · · , elli,j,kΦ (ξ, η, ς), · · ·
}
∪
{
· · · , leli,j,kΦ (ξ, η, ς), · · ·

}
∪
{
· · · , llei,j,k

Φ (ξ, η, ς), · · ·
})

.
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Face basis functions Transforming a discrete face polynomial, uh
0 ∈ FPN−1(Ωref), to Ω can

be done through
uh(x, y, z) = uh (Φ(ξ, η, ς)) =

J
√
g
uh
0(ξ, η, ς),

If we apply this transformation to the basis face polynomials in the reference domain, we obtain
a set of face basis functions in Ω,

leei,j,k
Φ (x, y, z) =

J
√
g

leei,j,k
(
Φ−1(x, y, z)

)
0
0

 , i ∈ {0, 1, · · · , N} , j, k ∈ {1, 2, · · · , N} ,

elei,j,k
Φ (x, y, z) =

J
√
g

 0

elei,j,k
(
Φ−1(x, y, z)

)
0

 , j ∈ {0, 1, · · · , N} , i, k ∈ {1, 2, · · · , N} ,

eeli,j,kΦ (x, y, z) =
J
√
g

 0
0

eeli,j,k
(
Φ−1(x, y, z)

)
 , k ∈ {0, 1, · · · , N} , i, j ∈ {1, 2, · · · , N} .

And if we define faces FΦ,ξ
l,m,n, FΦ,η

l,m,n and FΦ,ς
l,m,n as the mapped faces of F ξ

l,m,n, F η
l,m,n and F ς

l,m,n,
see (2.38), i.e.,

FΦ,ξ
l,m,n := Φ(F ξ

l,m,n), l ∈ {0, 1, · · · , N} , m, n ∈ {1, 2, · · · , N} ,(2.70a)

FΦ,η
l,m,n := Φ(F η

l,m,n), m ∈ {0, 1, · · · , N} , l, n ∈ {1, 2, · · · , N} ,(2.70b)

FΦ,ς
l,m,n := Φ(F ς

l,m,n), n ∈ {0, 1, · · · , N} , l,m ∈ {1, 2, · · · , N} ,(2.70c)

we can find that the face basis functions satisfy Kronecker delta properties expressed as∫
FΦ,ξ
l,m,n

leei,j,k
Φ · dA = δi,j,kl,m,n,

∫
FΦ,η
l,m,n

leei,j,k
Φ · dA = 0,

∫
FΦ,ς
l,m,n

leei,j,k
Φ · dA = 0,(2.71a) ∫

FΦ,ξ
l,m,n

elei,j,k
Φ · dA = 0,

∫
FΦ,η
l,m,n

elei,j,k
Φ · dA = δi,j,kl,m,n,

∫
FΦ,ς
l,m,n

elei,j,k
Φ · dA = 0,(2.71b) ∫

FΦ,ξ
l,m,n

eeli,j,kΦ · dA = 0,

∫
FΦ,η
l,m,n

eeli,j,kΦ · dA = 0,

∫
FΦ,ς
l,m,n

eeli,j,kΦ · dA = δi,j,kl,m,n.(2.71c)

and we use FPN−1(Ω) to denote the space of face functions in Ω, i.e.,

FPN−1(Ω) :=

span
({

· · · , leei,j,k
Φ (ξ, η, ς), · · ·

}
∪
{
· · · , elei,j,k

Φ (ξ, η, ς), · · ·
}
∪
{
· · · , eeli,j,kΦ (ξ, η, ς), · · ·

})
.

Volume basis functions Transforming a discrete volume polynomial, fh0 ∈ VPN−1(Ωref), to
Ω can be conducted by

fh(x, y, z) = fh(Φ(ξ, η, ς)) =
1
√
g
fh0 (ξ, η, ς),
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If we apply this transformation to the basis volume polynomials in the reference domain, we
obtain a set of volume basis functions in Ω,

eeei,j,kΦ (x, y, z) = eeei,j,kΦ (Φ(ξ, η, ς)) =
1
√
g

eeei,j,k(ξ, η, ς), i, j, k ∈ {1, 2, · · · , N} .

If we define volumes V Φ
l,m,n as the mapped volumes of Vl,m,n, see (2.42), namely,

(2.72) V Φ
l,m,n := Φ(Vl,m,n), l,m, n ∈ {1, 2, · · · , N} ,

we will find the following Kronecker delta property for the volume basis functions,

(2.73)
∫
V ϕ
l,m,n

eeei,j,kΦ (x, y, z)dV = δi,j,kl,m,n.

We now define VPN (Ω),

VPN−1(Ω) := span
({

eeei,j,kΦ (ξ, η, ς)
∣∣∣ i, j, k ∈ {1, 2, · · · , N}

})
,

as the space of volume functions in Ω.

Complement 2.8 For a proof of Kronecker delta properties (2.67), (2.69), (2.71) and
(2.73), see document [Kronecker_delta.pdf]
www.mathischeap.com/contents/LIBRARY/ptc/Kronecker_delta.

※ Discrete functions in spaces NPN (Ω), EPN−1(Ω), FPN−1(Ω) and VPN−1(Ω) are of the
following forms.

• A node function ψh ∈ NPN (Ω) is of the form

(2.74) ψh(x, y, z) =

N∑
i=0

N∑
j=0

N∑
k=0

Ψi,j,kllli,j,kΦ (x, y, z).

where Ψi,j,k ∈ R are the expansion coefficients of the node function. And from the
Kronecker delta property (2.67), we have

(2.75) ψh(PΦ
l,m,n) = Ψl,m,n.

• A edge function ωh ∈ EPN−1(Ω) is of the form

(2.76)

ωh(x, y, z) =

N∑
i=1

N∑
j=0

N∑
k=0

wξ
i,j,kelli,j,kΦ (x, y, z)

+
N∑
i=0

N∑
j=1

N∑
k=0

wη
i,j,kleli,j,kΦ (x, y, z)

+

N∑
i=0

N∑
j=0

N∑
k=1

wς
i,j,kllei,j,k

Φ (x, y, z).

https://www.mathischeap.com/contents/LIBRARY/ptc/Kronecker_delta.html
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where wξ
i,j,k, wη

i,j,k,w
ς
i,j,k ∈ R are the expansion coefficients of the edge function. And

from Kronecker delta properties (2.69), we find that∫
EΦ,ξ

l,m,n

ωh · dr = wξ
l,m,n,(2.77a) ∫

EΦ,η
l,m,n

ωh · dr = wη
l,m,n,(2.77b) ∫

EΦ,ς
l,m,n

ωh · dr = wς
l,m,n.(2.77c)

• A face function uh ∈ FPN−1(Ω) is of the form

(2.78)

uh(x, y, z) =

N∑
i=0

N∑
j=1

N∑
k=1

uξi,j,kleei,j,k
Φ (x, y, z)

+

N∑
i=1

N∑
j=0

N∑
k=1

uηi,j,kelei,j,k
Φ (x, y, z)

+

N∑
i=1

N∑
j=1

N∑
k=0

uςi,j,keeli,j,kΦ (x, y, z)

where uξi,j,k, uηi,j,k, uςi,j,k ∈ R are the expansion coefficients of the face function. And
from Kronecker delta properties (2.71), we obtain that∫

FΦ,ξ
l,m,n

uh · dA = uξl,m,n,(2.79a) ∫
FΦ,η
l,m,n

uh · dA = uηl,m,n,(2.79b) ∫
FΦ,ς
l,m,n

uh · dA = uςl,m,n.(2.79c)

• A volume function fh ∈ VPN−1(Ω) is of the form

(2.80) fh(x, y, z) =
N∑
i=1

N∑
j=1

N∑
k=1

fi,j,keeei,j,kΦ (x, y, z),

where fi,j,k ∈ R are the expansion coefficients of the volume function. And from the
Kronecker delta property (2.73), we will find

(2.81)
∫
V Φ
l,m,n

fh dV = fl,m,n.

Recall that the indexings and local numberings for the reference domain have been inherited
in the general domain Ω. We now repeat the analysis that has been done for the reference domain
in Section 2.3.2 except that this time we integrate over the mapped geometric objects, see (2.66),
(2.68), (2.70) and (2.72) (instead of the original geometric objects) and use the properties (2.75),
(2.77), (2.79) and (2.81) for the general domain (instead of the ones, see (2.45), (2.46), (2.47)
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and (2.48), for the reference domain). And we again use the gradient theorem for line integrals,
the Stokes’ integral theorem and the Gauss’ integral theorem. As a result, we can find that the
gradient, curl and divergence operators for spaces NPN (Ω), EPN−1(Ω) and FPN−1(Ω) will still
have the same exact, topological discrete counterparts, the incidence matrices E(∇), E(∇×) and
E(∇·) as those derived in Section 2.3.2 for the reference domain regardless of the mapping Φ.

Having found the incidence matrices for the general domain, once again, we can follow the
same analysis for (2.25) and obtain

∇ψh ∈ EPN−1(Ω) ∀ψh ∈ NPN (Ω),

∇× ωh ∈ FPN−1(Ω) ∀ωh ∈ EPN−1(Ω),

∇ · uh ∈ VPN−1(Ω) ∀uh ∈ FPN−1(Ω).

Thus, we can conclude that the mimetic spaces NPN (Ω), EPN−1(Ω), FPN−1(Ω) and VPN−1(Ω)
form the following discrete de Rham complex,

(2.82) ,

where the gradient, curl and divergence operators still have the exact discrete counterparts, the
incidence matrices E(∇), E(∇×) and E(∇·) which are topological and thus do not depend on the
mapping Φ. This is consistent with the statement that the MSEM preserves the topological
structure of primal operators at the discrete level. The subscripts, N and N − 1, of these spaces
refer to the overall degrees of the corresponding polynomials in the reference domain, and we
call NPN (Ω), EPN−1(Ω), FPN−1(Ω) and VPN−1(Ω) a set of mimetic spaces of degree N .

※ Given a variable, i.e., ψ ∈ H1(Ω), ω ∈ H(curl; Ω), u ∈ H(div; Ω) or f ∈ L2(Ω), we can
find its projection in NPN (Ω), EPN−1(Ω), FPN−1(Ω) or VPN−1(Ω) through the projection
operator [33,83],

π := I ◦ R,

where R is the reduction operator which takes the variable and produces the expansion
coefficients and I is the reconstruction operator which reconstructs the discrete variable
with the expansion coefficients as a linear combinations of corresponding basis functions,
i.e., the mimetic basis functions in this case. Particular projections are explained as follows:

• For ψ ∈ H1(Ω), the expansion coefficients of its projection ψh := π (ψ) ∈ NPN (Ω),
are

(2.83) Ψi,j,k = ψ(PΦ
i,j,k),

where points PΦ
i,j,k are the mapped points, see (2.66). For the form of the discrete

variable φh, see (2.74).



2.3. MIMETIC POLYNOMIALS 31

• For ω ∈ H(curl; Ω), the expansion coefficients of its projection ωh := π (ω) ∈ EPN−1(Ω)
are

wξ
i,j,k =

∫
EΦ,ξ

i,j,k

ω · dr(2.84a)

wη
i,j,k =

∫
EΦ,η

i,j,k

ω · dr(2.84b)

wς
i,j,k =

∫
EΦ,ς

i,j,k

ω · dr,(2.84c)

where edges EΦ,ξ
i,j,k, EΦ,η

i,j,k and EΦ,ς
i,j,k are the mapped edges, see (2.68). For the form of

the discrete variable ωh, see (2.76).

• For u ∈ H(div; Ω), the expansion coefficients of its projection uh := π (u) ∈ FPN−1(Ω)
are

uξi,j,k =

∫
SΦ,ξ
i,j,k

u · dA,(2.85a)

uηi,j,k =

∫
SΦ,η
i,j,k

u · dA,(2.85b)

uςi,j,k =

∫
SΦ,ς
i,j,k

u · dA,(2.85c)

where edges SΦ,ξ
i,j,k, SΦ,η

i,j,k and SΦ,ς
i,j,k are the mapped faces, see (2.70). For the form of

the discrete variable uh, see (2.78).

• For f ∈ L2(Ω), the expansion coefficients of its projection fh := π (f) ∈ VPN−1(Ω)
are

(2.86) fi,j,k =

∫
V Φ
i,j,k

f dV,

where volumes V Φ
i,j,k are the mapped volumes, see (2.72). For the form of the discrete

variable fh, see (2.80).

Note that we have assumed that integrals (2.83), (2.84), (2.85) and (2.86), i.e., the reduc-
tions, exist. For more discussions about the well-posedness of the reduction operator, we
refer to, for example, [34, 83,112].

Complement 2.9 For a Python implementation of these projections, see script
[projection.py] www.mathischeap.com/contents/LIBRARY/ptc/projection.

We can assess the accuracy of the projection by measuring the L2-error, for example,∥∥∥ψh
∥∥∥
L2-error

:=
∥∥∥ψh − ψ

∥∥∥
L2
,∥∥∥uh

∥∥∥
L2-error

:=
∥∥∥uh − u

∥∥∥
L2
,

https://www.mathischeap.com/contents/LIBRARY/ptc/projection.html
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where ∥·∥L2 is the L2-norm, namely, ∥·∥L2 =
√

⟨·, ·⟩Ω .

Complement 2.10 For a Python implementation of computing the L2-error, see script
[L2_error.py] www.mathischeap.com/contents/LIBRARY/ptc/L2_error.

※ The L2-inner product of two elements from these spaces can be calculated in the following
ways.

• For two discrete functions ph, ψh ∈ NPN (Ω), the L2-inner product of them is

(2.87)
〈
ph, ψh

〉
Ω
= pTMNψ = ψTMNp,

where MN is the mass matrix of space NPN (Ω)and is symmetric and positive definite.

• For two discrete functions qh,ωh ∈ EPN−1(Ω), the L2-inner product of them is

(2.88)
〈
qh, ωh

〉
Ω
= qTMEω = ωTMEq,

where ME is the mass matrix of space EPN−1(Ω) and is symmetric and positive defi-
nite.

• For two discrete functions vh,uh ∈ FPN−1(Ω), the L2-inner product of them is

(2.89)
〈
vh, uh

〉
Ω
= vTMFu = uTMFv,

where MF is the mass matrix of space EPN−1(Ω)and is symmetric and positive definite.

• For two discrete functions φh, fh ∈ VPN−1(Ω), we have

(2.90)
〈
φh, fh

〉
Ω
= φTMVf = fTMVφ,

where MV is the mass matrix of the space VPN−1(Ω)and is symmetric and positive
definite.

Recall that we use underlined symbols to indicate vectors of expansion coefficients of discrete
elements, for example, p, ψ, ω, u, f and so on.

Complement 2.11 For an instruction of how to compute the entries of mass matrices MN,
ME, MF and MV, see document [mass_matrices.pdf]
www.mathischeap.com/contents/LIBRARY/ptc/mass_matrices_pdf.

Complement 2.12 For a Python implementation of calculating mass matrices MN, ME,
MF and MV under a given mapping, see script [mass_matrices.py]
www.mathischeap.com/contents/LIBRARY/ptc/mass_matrices_py.

When a material parameter is involved in the L2-inner product, the material property can be
embedded by the mass matrix. For example,〈

vh, k−1uh
〉
Ω
= vTMk

Fu.

https://www.mathischeap.com/contents/LIBRARY/ptc/L2_error.html
https://www.mathischeap.com/contents/LIBRARY/ptc/mass_matrices_pdf.html
https://www.mathischeap.com/contents/LIBRARY/ptc/mass_matrices_py.html
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2.4 Application to the Poisson problem
In this section, we demonstrate the MSEM by applying it to the Poisson problem.

2.4.1 Single element case
For convenience, here we briefly repeat the weak formulation (2.15): Given f ∈ L2(Ω), ϕ̂ ∈
H1/2(Γφ) and û ∈ H−1/2(Γu), seek (u, ϕ) ∈ Hû(div; Ω)× L2(Ω) such that

〈
v, k−1u

〉
Ω
+ ⟨∇ · v, ϕ⟩Ω =

∫
Γφ

ϕ̂ (v · n) dΓ ∀v ∈ H0(div; Ω),(2.91a)

⟨φ,∇ · u⟩Ω = −⟨φ, f⟩Ω ∀φ ∈ L2(Ω).(2.91b)

Assume we are in R3 and there is a smooth enough mapping Φ, see (2.65), which maps Ωref

into Ω. In other words, we consider the whole computational domain as a single element.
Mimetic spaces NPN (Ω), EPN−1(Ω), FPN−1(Ω) and VPN−1(Ω) then can be constructed in the
computational domain. We use FPN−1(Ω) to approximate space H(div; Ω) and use VPN−1(Ω)
to approximate space L2(Ω), i.e., in the discrete de Rham complex (2.82), we take

,

If we set boundaries Γφ and Γu to Γφ = ∂Ω and Γu = ∅, a discrete version of (2.91) can be
written as: Given f ∈ L2(Ω), seek (uh, ϕh) ∈ FPN−1(Ω)× VPN−1(Ω) such that〈

vh, k−1uh
〉
Ω
+
〈
∇ · vh, ϕh

〉
Ω
=

∫
∂Ω
ϕ̂
(
vh · n

)
dΓ ∀vh ∈ FPN−1(Ω),(2.92a) 〈

φh,∇ · uh
〉
Ω
= −

〈
φh, fh

〉
Ω

∀φh ∈ VPN−1(Ω).(2.92b)

Remark 2.3 Note that, in the boundary integral term of (2.92a), ϕ̂ is at the continuous level
(without superscript h). This is because when it is time to evaluate this boundary integral
to include the boundary condition ϕ̂ (to obtain the entries of vector b in (2.93) and (2.94),
see Complement 2.13), we could directly use the continuous boundary variable ϕ̂. While for
f ∈ L2(Ω) we have projected it into fh ∈ VPN−1(Ω) in (2.92b), see (2.86) for how to do this
projection.

The system (2.92) can be written in algebraic format as

vTMk
Fu+ vTET

(∇·)MVϕ = vTb ∀v ∈ R3N2(N+1),(2.93a)

φTMVE(∇·)u = −φTMVf ∀φ ∈ RN3
.(2.93b)

which is equivalent to a linear system,

(2.94)
[

Mk
F ET

(∇·)MV
MVE(∇·) 0

] [
u
ϕ

]
=

[
b

−MVf

]
.

Since we have set boundaries Γφ and Γu to Γφ = ∂Ω and Γu = ∅ which is not the true
case, we are not able to evaluate all entries of the vector b. These unknown entries will later
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be eliminated when we include the boundary condition û by making changes in the first block
row of (2.94). See Complement 2.13 for an illustration of a practical approach of including the
boundary conditions.

Complement 2.13 For an illustration of a practical approach of including the boundary
conditions, see document [boundary_conditions.pdf]
www.mathischeap.com/contents/LIBRARY/ptc/boundary_conditions.

Note that the approach of imposing the boundary conditions introduced here is not the only
approach, but is practical and easy for implementation one.

By now, we finally get the discrete linear system ready to solve. Once the system is solved,
we can reconstruct the numerical solutions

(
uh, ϕh

)
∈ FPN−1(Ω) × VPN−1(Ω) for the Poisson

problem with the expansion coefficients in solutions u and ϕ of the discrete linear system and
the corresponding mimetic basis functions.

So far, everything happened in one single element. In practice, cases with multiple elements
are more common. We will further demonstrate the usage of the MSEM in a domain divided
into multiple elements in the next subsection.

2.4.2 A particular example of multiple mesh elements
Now, as a particular example, we apply the MSEM to a Poisson problem with a manufactured
solution in a 3D domain divided into multiple elements. The domain is selected to be a unit
cube,

Ω = [0, 1]3,

and the manufactured solution is

ϕexact = sin(2πx) sin(2πy) sin(2πz).

If ϕexact solves the Poisson problem with material parameter k = 1, the exact solution of u and
the corresponding source term, f , then can be computed,

uexact = ∇ϕexact =

2π cos(2πx) sin(2πy) sin(2πz)2π sin(2πx) cos(2πy) sin(2πz)
2π sin(2πx) sin(2πy) cos(2πz)

 ,
(2.95) f = −∇ · uexact = 12π2 sin(2πx) sin(2πy) sin(2πz).

We select the boundary Γφ to be the face x = 0. The complete weak formulation of this
particular problem is: In Ω = [0, 1]3 with boundary ∂Ω = Γφ ∪Γu, where Γφ = (0, (0, 1), (0, 1)),
given f ∈ L2(Ω), boundary conditions ϕ̂ = ϕexact on Γφ and û = uexact · n on Γu, find (u, ϕ) ∈
Hû(div; Ω)× L2(Ω) such that (2.91) is satisfied.

In Ω, a conforming structured mesh of K3 elements,

(2.96) Ωm = Ωi+(j−1)K+(k−1)K2 = Ωi,j,k, i, j, k ∈ {1, 2, · · · ,K} ,

is generated. The mapping Φi,j,k : Ωref → Ωi,j,k is given as

Φi,j,k = Φ̊ ◦ Ξi,j,k,

https://www.mathischeap.com/contents/LIBRARY/ptc/boundary_conditions.html
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where Ξi,j,k is a linear mapping,

Ξi,j,k : Ωref →
([

i− 1

K
,
i

K

]
,

[
j − 1

K
,
j

K

]
,

[
k − 1

K
,
k

K

])
,

i.e., rs
t

 = Ξi,j,k(ξ, η, ς) =
1

K

i− 1 + (ξ + 1)/2
j − 1 + (η + 1)/2
k − 1 + (ς + 1)/2

 ,

and Φ̊ is a mapping expressed as

(2.97)

xy
z

 = Φ̊(r, s, t) =

r + 1
2c sin(2πr) sin(2πs) sin(2πt)

s+ 1
2c sin(2πr) sin(2πs) sin(2πt)

t+ 1
2c sin(2πr) sin(2πs) sin(2πt)

 ,

where 0 ≤ c ≤ 0.25 is a deformation factor. When c = 0, Φ̊ is also linear and, thus, we get a
uniform orthogonal mesh. While, when c > 0, the mesh is curvilinear. We call this mesh the
crazy mesh. Two examples of the crazy mesh are shown in Fig. 2.6.

(a) c = 0 (b) c = 0.25

Figure 2.6: Two examples of the crazy mesh of 33 elements.

Complement 2.14 For a Python implementation of the crazy mesh, see script
[crazy_mesh.py] www.mathischeap.com/contents/LIBRARY/ptc/crazy_mesh.

We now can apply the discretization introduced in Section 2.4.1 to all elements of the mesh
and obtain K3 local linear systems. Assembling these local systems leads to a global discrete
linear algebra system ready to be solved. And we denote the left-hand side matrix of the global
matrix by F. For an introduction of the assembly of local systems, see for example [132].

Complement 2.15 For an implementation of the assembly in Python, see script
[assembly.py] www.mathischeap.com/contents/LIBRARY/ptc/assembly.

Solving the global discrete linear system will give the coefficients of the weak solutions uh

and ϕh, (
uh, ϕh

)
∈ FPN−1(Ω)× VPN−1(Ω),

https://www.mathischeap.com/contents/LIBRARY/ptc/crazy_mesh.html
https://www.mathischeap.com/contents/LIBRARY/ptc/assembly.html
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where in this case VPN−1(Ω) :=
⋃K3

m=1 VPN−1(Ωm) and FPN−1(Ω) :=
⋃K3

m=1 FPN−1(Ωm).

Complement 2.16 For a Python implementation of this particular example, see script
[Poisson_problem.py]
www.mathischeap.com/contents/LIBRARY/ptc/Poisson_problem.

2.4.3 Results
In Fig. 2.7, Some results of the eigen-spectrum of F, the left-hand side matrix of the global
system, are presented. It is shown that all eigenvalues are away from zero, which shows that
the system is not singular. This is further supported by the results shown in Fig. 2.8 where
condition numbers of F under hp-refinement are presented.

(a) c = 0

(b) c = 0.125 (c) c = 0.25

Figure 2.7: Results of the eigen-spectrum of F for N = 1, K = 2. The radii of the blue and red circles
are the moduli of the eigenvalues of the maximum and minimum modulus respectively.

https://www.mathischeap.com/contents/LIBRARY/ptc/Poisson_problem.html
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Figure 2.8: Condition numbers, κ, of F under hp-refinement where h =
1

K
denotes the size of mesh

cells.

We now investigate the accuracy of the MSEM. In Fig. 2.9, some results of the L2- and
H(div)-error of the solution uh are presented. The

∥∥uh
∥∥
H(div)-error is defined as

∥∥∥uh
∥∥∥
H(div)-error

:=

√
∥uh∥2L2-error + ∥∇ · uh∥2L2-error .

From these results, we can see that both
∥∥uh

∥∥
L2-error and

∥∥uh
∥∥
H(div)-error converge exponentially

under p-refinement on either orthogonal (c = 0) or curvilinear meshes (c > 0). Similar expo-
nential convergence is found for ϕh with respect to the L2-error, see Fig. 2.10. These results
correctly reflect the fact the MSEM is a spectral element method. The staircase-shaped con-
vergence for c = 0 and K = 1, 2 is because in these cases some mimetic functions of particular
degrees may miss some modes of the exact solution of f such that the projection error of fh,
see Fig. 2.11, converges in a staircase-shape. But, overall, this does not change the fact that the
MSEM reduces the error of uh and ϕh exponentially under p-refinement.

Figure 2.9: The convergence of uh with respect to L2- and H(div)-error under p-refinement.

In Fig. 2.12 where results of the L2- and H(div)-error of the solution uh under h-refinement
are shown, we can see that both

∥∥uh
∥∥
L2-error and

∥∥uh
∥∥
H(div)-error always converge algebraically

at the optimal rate on either orthogonal or curvilinear meshes. Similar results are found for the
solution ϕh with respect to the L2-error as shown in Fig. 2.13.



38 CHAPTER 2. MIMETIC SPECTRAL ELEMENT METHOD

Figure 2.10: The convergence of ϕh with respect to L2-error under p-refinement.

Figure 2.11: The convergence of fh with respect to the projection error,
∥∥fh − f

∥∥
L2 , under p-

refinement.

Figure 2.12: Convergence of uh with respect to L2- and H(div)-error under h-refinement where h =
1

K
denotes the size of mesh cells.

We now investigate whether the conservation relation, ∇ · uh = −fh is preserved by the
MSEM. In Fig. 2.14, the results of

∥∥∇ · uh + fh
∥∥
L2 under hp-refinement are presented. From

these results, we can conclude that the conservation relation, ∇·uh = −fh, is always satisfied to
machine precision (O−13). The slight increasing of

∥∥∇ · uh + fh
∥∥
L2 under p- or h- refinement is

because of the increasing of the condition number when the size of the global system increases.
In Fig. 2.15, we plot the local magnitude of ∇ · uh + fh on surfaces Φ̊([0, 1], [0, 1], 0.25) and
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Figure 2.13: Convergence of ϕh with respect to L2-error under h-refinement where h =
1

K
denotes the

size of mesh cells.

Φ̊([0, 1], [0, 1], 0.75) in the computational domain for N = 4 and K = 2. These results further
support the claim that the MSEM preserves the conservation (divergence) relation of the Poisson
problem. Note that this is only satisfied for fh instead of f , which is understandable as in this
manufactured case the term f is made of trigonometric functions, see (2.95), which can not be
exactly represented by the mimetic functions of finite degree. For f that could be represented
by finite degree mimetic functions (which usually is the case in practical problems like we set
f = 0 for conservation of mass in flow problems), we will have ∇ · uh = −fh = −f .

Figure 2.14: The L2-norm of ∇ · uh + fh under hp-refinement where h =
1

K
denotes the size of mesh

cells.
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(b) c = 0.125
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(c) c = 0.25

Figure 2.15: Results of log10
(∣∣∇ · uh + fh

∣∣) on mapped faces Φ̊ (Φ̊([0, 1], [0, 1], 0.25) and
Φ̊([0, 1], [0, 1], 0.75)), see (2.97), for N = 4, K = 2.
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