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Hybrid methods

Hybrid methods

Hybrid (finite element) methods are those methods that relax the continuity across the inter-element interface by
introducing a Lagrange multiplier between elements.

↑
Lagrange multiplier

For more information about hybrid methods, we refer to Pian 1, Raviart and Thomas 2, Brezzi and Fortin 3.

1. Pian, T.H. Derivation of element stiffness matrices by assumed stress distributions. AIAA journal, (1964) 2(7), 1333-1336.
2. Raviart, P.A. and Thomas, J.M. Primal hybrid finite element methods for 2nd order elliptic equations. Mathematics of computation, (1977) 31(138), 391-413.
3. Brezzi, F. and Fortin M. Mixed and hybrid finite element methods. Springer-Verlag, 1991.
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Mimetic discretization

Mimetic discretization

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :

R→ Ω(0) grad→ Ω(1) curl→ Ω(2) div→ Ω(3) → 0,

↓ ↓ ↓ ↓

R→ Ω(0)
h

grad→ Ω(1)
h

curl→ Ω(2)
h

div→ Ω(3)
h → 0.

Therefore, mimetic methods are also called structure-preserving or compatible methods.

Hybrid Mimetic Spectral Element Method 4, 5, 6 is a high order mimetic mixed finite element method.

4. Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.
5. Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational

Physics, (2013) 240 : 284-309.
6. Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to

the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.
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Broken Sobolev spaces

Broken Sobolev spaces

Given an open bounded domain Ω ⊂ Rd with Lipschitz boundary ∂Ω. A mesh, denoted by Ωh, partitions Ω into
K disjoint open elements Ωk with Lipschitz boundary ∂Ωk,

Ω̄ =
K⋃

k=1

Ω̄k, Ωi ∩Ωj = ∅, 1 ≤ i 6= j ≤ K.

We can break H1(Ω), H(div, Ω) and obtain the so-called broken Sobolev spaces 7 :

H1(Ωh) =
{

ϕ ∈ L2(Ω)
∣∣∣ ϕ|Ωk

∈ H1(Ωk)
}
=

K

∏
k=1

H1(Ωk),

H(div, Ωh) =

{
u ∈

[
L2(Ω)

]d
∣∣∣∣ u|Ωk

∈ H(div, Ωk)

}
=

K

∏
k=1

H(div, Ωk).

Spaces for interface functions are then defined as

H1/2(∂Ωh) := trh
gradH1(Ω), H−1/2(∂Ωh) := trh

divH(div, Ω),

where trace operators trh
grad and trh

div restrict ϕ ∈ H1(Ω) and u ∈ H(div, Ω) respectively onto ∂Ωh =
⋃K

k=1 ∂Ωk.

7. Carstensen, C., Demkowicz, L. and Gopalakrishnan, J. Breaking spaces and forms for the DPG method and applications including Maxwell equations.
Computers and Mathematics with Applications, (2016) 72(3) : 494-522.
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Mixed formulation

We consider the constrained minimization problem,

arg
u∈L2(Ω)

min
divu=−f

1
2
(u, u)L2(Ω) ,

where f is given. By introducing a Lagrange multiplier ϕ, we can rewrite this constrained minimization problem
into a saddle-point problem for (u, ϕ) ∈ H(div, Ω)×H1(Ω) :

L(u, ϕ; f , ϕ̂) =
1
2
(u, u)L2(Ω) + (ϕ, div u + f )L2(Ω) − (ϕ̂, trdivu)L2(∂Ω) ,

where ϕ̂ = trgrad ϕ ∈ H1/2(∂Ω) and f ∈ L2(Ω) is given. Variational analysis on this functional gives rise to the
mixed formulation : Find (u, ϕ) ∈ H(div, Ω)×H1(Ω) such that{

(u, v)L2(Ω) + (ϕ, div v)L2(Ω) = (ϕ̂, trdivv)L2(∂Ω)

(ψ, div u)L2(Ω) = − (ψ, f )L2(Ω)

,

for all (v, ψ) ∈ H(div, Ω)×H1(Ω). This is a weak mixed formulation of the Poisson equation.
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Hybrid mixed formulation

If we set up a mesh Ωh in Ω, by breaking u and ϕ into broken spaces, H(div, Ωh) and H1(Ωh), and introducing
a new Lagrange multiplier ϕ̌ in the interface space H1/2(∂Ωh\∂Ω), we can rewrite the functional as

L(u, ϕ, ϕ̌; f , ϕ̂) =
1
2
(u, u)L2(Ω) + (ϕ, div u + f )L2(Ω) − (ϕ̌, trdivu)L2(∂Ωh\∂Ω) − (ϕ̂, trdivu)L2(∂Ω) .

The interface variable ϕ̌ serves as the Lagrange multiplier which enforces the continuity at the internal interface
∂Ωh\∂Ω.

From this new functional, we can obtain the hybrid mixed formulation for the Poisson problem written as : Given
f ∈ L2(Ω) and ϕ̂ = trgrad ϕ ∈ H1/2(∂Ω), find (u, ϕ, ϕ̌) ∈ H(div, Ωh)×H1(Ωh)×H1/2(∂Ωh\∂Ω) such that

(u, v)L2(Ω) + (ϕ, div v)L2(Ω) − (ϕ̌, trdivv)L2(∂Ωh\∂Ω) = (ϕ̂, trdivv)L2(∂Ω)

(ψ, div u)L2(Ω) = − (ψ, f )L2(Ω)

−(ψ̌, trdivu)L2(∂Ωh\∂Ω) = 0

,

for all (v, ψ, ψ̌) ∈ H(div, Ωh)×H1(Ωh)×H1/2(∂Ωh\∂Ω). It is easy to prove that the interface variable ϕ̌ represents
the restriction of ϕ onto ∂Ωh\∂Ω.
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Mimetic basis functions and their dual representation

Mimetic basis functions

Let −1 = ξ0 < ξ1 < · · · < ξN = 1 be a partitioning of the interval [−1, 1]. The associated Lagrange polynomials
are

hi(ξ), ξ ∈ [−1, 1], i = 0, 1, · · · , N,
which satisfy hi(ξj) = δi,j, where δi,j is the Kronecker delta. The corresponding edge functions are then defined
as,

ei(ξ) = −
i−1

∑
k=0

dhk(ξ)

dξ
=

N

∑
k=i

dhk(ξ)

dξ
, i = 1, 2, · · · , N,

which satisfy
∫ ξj

ξj−1
ei(ξ) = δi,j.

Clearly, in R2, finite dimensional spaces spanned by basis functions
{

hi(ξ)ej(η), ei(ξ)hj(η)
}

and
{

ei(ξ)ej(η)
}

satisfy the De Rham complex. Let vector-valued function u and scalar-valued function f be spanned into

uh =

(
N

∑
i=0

N

∑
j=1

ui,jhi(ξ)ej(η),
N

∑
i=1

N

∑
j=0

vi,jei(ξ)hj(η)

)
and fh =

N

∑
i=1

N

∑
j=1

fi,jei(ξ)ej(η).

If f = div u, then fh = div uh and

fh =
N

∑
i=1

N

∑
j=1

(
ui,j − ui−1,j + vi,j − vi,j−1

)
ei(ξ)ej(η),
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Mimetic basis functions and their dual representation

Mimetic basis functions

Figure – Reference domain.

Let vector-valued function u and scalar-valued function f be spanned into

uh =

(
N

∑
i=0

N

∑
j=1

ui,jhi(ξ)ej(η),
N

∑
i=1

N

∑
j=0

vi,jei(ξ)hj(η)

)
, fh =

N

∑
i=1

N

∑
j=1

fi,jei(ξ)ej(η).

If f = div u, then

fh = div uh =
N

∑
i=1

N

∑
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
.
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Figure – Curvilinear domain.

The trace variable trdivu can be discretized as

trdivuh =
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∑
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i ei(ξ),

N

∑
i=1

vn
i ei(ξ),

N

∑
i=1
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i ei(η),

N

∑
i=1

ue
i ei(η)
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There is a linear operator, N, such that
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where utr = (−vs
i , vn

i ,−uw
i , ue

i )
T and
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
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Mimetic basis functions and their dual representation

Dual representation

Let scalar functions ph and qh be expanded in terms of
{

ei(ξ)ej(η)
}

,

(ph, qh)L2(Ωref)
=
∫

Ωref

ph(ξ, η)qh(ξ, η)dξdη = pTM(2)q,

where M(2) is the mass matrix. We define the dual basis functions 8 as[
˜e1(ξ)e1(η), · · · , ˜eN(ξ)eN(η)

]
:= [e1(ξ)e1(η), · · · , eN(ξ)eN(η)]M(2)−1

,

if we expand ph in terms of the dual basis functions
{

˜ei(ξ)ej(η)
}

, we have

(ph, qh)L2(Ωref)
= p̃Tq,

where p̃ = M(2)p. Furthermore, if qh = div vh, and vh is expanded by basis functions
{

hi(ξ)ej(η), ei(ξ)hj(η)
}

, we
have

(p̃h, div vh)L2(Ωref)
= p̃TE2,1v.

The same idea can be applied to trace basis functions.

8. Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017)
arXiv :1712.09472.
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Discretization

Discretization

Hybrid mixed formulation

Given f ∈ L2(Ω) and ϕ̂ = trgrad ϕ ∈ H1/2(∂Ω), find (u, ϕ, ϕ̌) ∈ H(div, Ωh)×H1(Ωh)×H1/2(∂Ωh\∂Ω) such that
(u, v)L2(Ω) + (ϕ, div v)L2(Ω) − (ϕ̌, trdivv)L2(∂Ωh\∂Ω) = (ϕ̂, trdivv)L2(∂Ω)

(ψ, div u)L2(Ω) = − (ψ, f )L2(Ω)

−(ψ̌, trdivu)L2(∂Ωh\∂Ω) = 0

,

for all (v, ψ, ψ̌) ∈ H(div, Ωh)×H1(Ωh)×H1/2(∂Ωh\∂Ω).

We choose finite dimensional spaces spanned by following basis functions for the discretization :{
hi(ξ)ej(η), ei(ξ)hj(η)

}
→ H(div, Ωh).{

˜ei(ξ)ej(η)
}
→ H1(Ωh).{

ẽi(s)
}
→ H1/2(∂Ωh).{

ei(ξ)ej(η)
}
→ L2(Ωh).
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−(ψ̌, trdivu)L2(∂Ωh\∂Ω) = 0

,

for all (v, ψ, ψ̌) ∈ H(div, Ωh)×H1(Ωh)×H1/2(∂Ωh\∂Ω).

Discrete hybrid mixed formulation :M(1) E2,1T −NT
I

E2,1 0 0
−NI 0 0

u
ϕ

ϕ̌

 =

NT
B ϕ̂

−f
0

 .

M(1) : metric-dependent ; element-wise-block-diagonal ;

E2,1 : metric-independent ; element-wise-block-diagonal ; super
sparse ; ±1 non-zero entries ;

N : metric-independent ; even more sparse ; ±1 non-zero
entries ;
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Discretization

Discretization

Discrete hybrid mixed formulation :M(1) E2,1T −NT
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0
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M(1) : metric-dependent ; element-wise-block-diagonal ;

E2,1 : metric-independent ; element-wise-block-diagonal ; super
sparse ; ±1 non-zero entries ;

N : metric-independent ; even more sparse ; ±1 non-zero
entries ;

We can easily eliminate u and ϕ and obtain a system for the discrete interface variable ϕ̌,

Hϕ̌ = F,

where H = −NIM
(1)−1

[
M(1) −E2,1T (

E2,1M(1)−1
E2,1T)−1

E2,1
]

M(1)−1
NT

I ,

F = Fϕ̂ + Ff ,

Fϕ̂ = NIM
(1)−1

[
M(1) −E2,1T (

E2,1M(1)−1
E2,1T)−1

E2,1
]

M(1)−1
NT

B ϕ̂,

Ff = −NIM
(1)−1

E2,1T (
E2,1M(1)−1

E2,1T)−1
f .

Inverting M(1) and E2,1M(1)−1
E2,1T is easy (in parallel) because they are element-wise-block-diagonal.

Solving for ϕ̌ is cheap (smaller system size and condition number).

Remaining local problems for u and ϕ are trivial because (E2,1M(1)−1
E2,1T

)−1 is already computed.
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E2,1T

)−1 is already computed.
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ϕ
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 =

NT
B ϕ̂

−f
0

 .

M(1) : metric-dependent ; element-wise-block-diagonal ;

E2,1 : metric-independent ; element-wise-block-diagonal ; super
sparse ; ±1 non-zero entries ;

N : metric-independent ; even more sparse ; ±1 non-zero
entries ;

We can easily eliminate u and ϕ and obtain a system for the discrete interface variable ϕ̌,
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Numerical results

Manufactured solution

Given a domain Ω = [0, 1]2 and an exact solution ϕexact = cos(3πxey), we solve the Poisson problem with

fexact = −div grad ϕexact in Ω,

ϕ̂ = trgrad ϕexact on ∂Ω.


x =

1
2
+

1
2
[ξ + c sin(πξ) sin(πη)]

y =
1
2
+

1
2
[η + c sin(πξ) sin(πη)]

.
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Numerical results

Potential flow in a domain with spline interpolation boundaries

Upper, lower and inner boundaries : Cubic splines
interpolated free-slip walls.

Left and right boundaries : Inlet and outlet of
potential difference ∆ϕ = 10.

Boundary Sequence of samples.

Lower

(0, 0), (0.11, 0.01), (0.20, 0.12), (0.61,−0.05), (0.69, 0.16),
(0.82, 0), (0.91, 0.15), (1.01,−0.05), (1.21,−0.15), (1.30, 0.13),
(1.48, 0.22), (1.65,−0.05), (1.85, 0.02), (2, 0.15), (2.11,−0.03),
(2.36, 0.31), (2.50, 0.13), (2.71, 0.12), (2.91, 0), (3, 0).

Upper

(0, 1.5), (0.09, 1.51), (0.17, 1.32), (0.43, 1.45), (0.58, 1.36),
(0.83, 1.50), (0.93, 1.75), (1.14, 1.52), (1.18, 1.45), (1.33, 1.33),
(1.4, 1.64), (1.59, 1.45), (1.88, 1.37), (1.92, 1.47), (2.15, 1.63),
(2.40, 1.71), (2.51, 1.43), (2.72, 1.42), (2.89, 1.5), (3, 1.5).

Inner

(1, 0.5), (1.11, 0.35), (1.32, 0.55), (1.62, 0.66), (1.85, 0.45), (1.98, 0.5),
(2.1, 0.55), (1.95, 0.75), (1.9, 0.99), (1.79, 1.05), (1.6, 0.88), (1.33, 1.09),
(0.95, 1), (0.93, 0.95), (1.09, 0.76), (0.89, 0.65), (1, 0.5).

Yi Zhang Delft University of Technology ECCM-ECFD, 11-15 June 2018, Glasgow, UK MS34B, 15 June 2018 18 / 19



Introduction Hybrid mixed formulation Basis functions and discretization Numerical results and conclusions

Numerical results

Potential flow in a domain with spline interpolation boundaries

Upper, lower and inner boundaries : Cubic splines
interpolated free-slip walls.

Left and right boundaries : Inlet and outlet of
potential difference ∆ϕ = 10.

Table – Fluxes through the domain.
N Number of elements

16 64 256 576 1024
2 2.49949 2.92468 2.95905 3.01901 3.02207
4 2.95266 3.03115 3.02979 3.03123 3.03129
6 3.04810 3.02942 3.03120 3.03139 3.03139
8 3.01246 3.03047 3.03137 3.03140 3.03141
10 3.02062 3.03108 3.03141 3.03141 3.03141
12 3.03175 3.03137 3.03141 3.03141 3.03141
14 3.03045 3.03142 3.03141 3.03141 3.03141
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Conclusions

Conclusions

We have proposed a high order spectral element method using dual polynomials :

The method is hybrid ; it is very much parallelizable.

The method is mimetic ; the divergence operator is preserved at the discrete level.

Only one block is metric-dependent. Remaining blocks are metric-free, extremely sparse and
finite-difference(volume)-like (containing non-zero entries of −1 and 1 only).

It can be efficiently solved by solving a reduced system for the interface variable.

These features make the method a preferable one, especially for complex computational domains.

Thanks a lot. Questions ?
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