Numerical results and conclusions

A high order hybrid mimetic discretization on curvilinear quadrilateral meshes for complex geometries

Yi Zhang¹, Varun Jain¹, Artur Palha² and Marc Gerritsma¹

¹**Delft University of Technology** {y.zhang-14, v.jain, m.i.gerritsma}@tudelft.nl

²Eindhoven University of Technology a.palha@tue.nl

MS34B, 15 June 2018

Introduction	Hybrid mixed formulation	Basis functions and discretization	

Summary

1 Introduction

- Hybrid methods
- Mimetic discretization
- Broken Sobolev spaces

2 Hybrid mixed formulation

3 Basis functions and discretization

- Mimetic basis functions and their dual representation
- Discretization

4 Numerical results and conclusions

- Numerical results
- Conclusions

Introduction	Hybrid mixed formulation	Basis functions and discretization	
000			
Hybrid methods			

Hybrid methods

Hybrid (finite element) methods are those methods that relax the continuity across the inter-element interface by introducing a Lagrange multiplier between elements.

For more information about hybrid methods, we refer to Pian¹, Raviart and Thomas², Brezzi and Fortin³.

^{1.} Pian, T.H. Derivation of element stiffness matrices by assumed stress distributions. AIAA journal, (1964) 2(7), 1333-1336.

^{2.} Raviart, P.A. and Thomas, J.M. Primal hybrid finite element methods for 2nd order elliptic equations. Mathematics of computation, (1977) 31(138), 391-413

^{3.} Brezzi, F. and Fortin M. Mixed and hybrid finite element methods. Springer-Verlag, 1993

Introduction	Hybrid mixed formulation	Basis functions and discretization	
000			
Hybrid methods			

Hybrid methods

Hybrid (finite element) methods are those methods that relax the continuity across the inter-element interface by introducing a Lagrange multiplier between elements.

For more information about hybrid methods, we refer to Pian¹, Raviart and Thomas², Brezzi and Fortin³.

^{1.} Pian, T.H. Derivation of element stiffness matrices by assumed stress distributions. AIAA journal, (1964) 2(7), 1333-1336.

^{2.} Raviart, P.A. and Thomas, J.M. Primal hybrid finite element methods for 2nd order elliptic equations. Mathematics of computation, (1977) 31(138), 391-413

^{3.} Brezzi, F. and Fortin M. Mixed and hybrid finite element methods. Springer-Verlag, 1993

Introduction	Hybrid mixed formulation	Basis functions and discretization	
000			
Hybrid methods			

Hybrid methods

Hybrid (finite element) methods are those methods that relax the continuity across the inter-element interface by introducing a Lagrange multiplier between elements.

For more information about hybrid methods, we refer to Pian¹, Raviart and Thomas², Brezzi and Fortin³.

^{1.} Pian, T.H. Derivation of element stiffness matrices by assumed stress distributions. AIAA journal, (1964) 2(7), 1333-1336.

^{2.} Raviart, P.A. and Thomas, J.M. Primal hybrid finite element methods for 2nd order elliptic equations. Mathematics of computation, (1977) 31(138), 391-413.

^{3.} Brezzi, F. and Fortin M. Mixed and hybrid finite element methods. Springer-Verlag, 1991.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
000			
Mimetic discretization			

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :

$$\mathbb{R} \to \Omega^{(0)} \stackrel{\text{grad}}{\to} \Omega^{(1)} \stackrel{\text{curl}}{\to} \Omega^{(2)} \stackrel{\text{div}}{\to} \Omega^{(3)} \to 0,$$

$$\begin{array}{c} \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \\ \mathbb{R} \to \Omega_h^{(0)} \stackrel{\mathrm{grad}}{\to} \Omega_h^{(1)} \stackrel{\mathrm{curl}}{\to} \Omega_h^{(2)} \stackrel{\mathrm{div}}{\to} \Omega_h^{(3)} \to 0. \end{array}$$

Therefore, mimetic methods are also called structure-preserving or compatible methods.

Hybrid Mimetic Spectral Element Method^{4, 5, 6} is a high order mimetic mixed finite element method.

^{4.} Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.

^{5.} Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics, (2013) 240 : 284-309.

^{6.} Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
000			
Mimetic discretization			

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :

$$\begin{split} \mathbb{R} &\to \Omega^{(0)} \stackrel{\text{grad}}{\to} \Omega^{(1)} \stackrel{\text{curl}}{\to} \Omega^{(2)} \stackrel{\text{diy}}{\to} \Omega^{(3)} \to 0, \\ &\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \\ \mathbb{R} &\to \Omega_h^{(0)} \stackrel{\text{grad}}{\to} \Omega_h^{(1)} \stackrel{\text{curl}}{\to} \Omega_h^{(2)} \stackrel{\text{diy}}{\to} \Omega_h^{(3)} \to 0. \end{split}$$

Therefore, mimetic methods are also called structure-preserving or compatible methods.

Hybrid Mimetic Spectral Element Method ^{4, 5, 6} is a high order mimetic mixed finite element method.

^{4.} Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.

^{5.} Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics, (2013) 240 : 284-309.

^{6.} Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
000			
Mimetic discretization			

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :

$$\begin{split} \mathbb{R} &\to \Omega^{(0)} \stackrel{\text{grad}}{\to} \Omega^{(1)} \stackrel{\text{curl}}{\to} \Omega^{(2)} \stackrel{\text{diy}}{\to} \Omega^{(3)} \to 0, \\ &\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \\ \mathbb{R} &\to \Omega_h^{(0)} \stackrel{\text{grad}}{\to} \Omega_h^{(1)} \stackrel{\text{curl}}{\to} \Omega_h^{(2)} \stackrel{\text{div}}{\to} \Omega_h^{(3)} \to 0. \end{split}$$

Therefore, mimetic methods are also called structure-preserving or compatible methods.

Hybrid Mimetic Spectral Element Method^{4, 5, 6} is a high order mimetic mixed finite element method.

^{4.} Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv:1111.4304.

^{5.} Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics, (2013) 240 : 284-309.

^{6.} Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
000			
Mimetic discretization			

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :

$$\begin{split} \mathbb{R} &\to \Omega^{(0)} \stackrel{\text{grad}}{\to} \Omega^{(1)} \stackrel{\text{curl}}{\to} \Omega^{(2)} \stackrel{\text{diy}}{\to} \Omega^{(3)} \to 0, \\ &\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \\ \mathbb{R} &\to \Omega_h^{(0)} \stackrel{\text{grad}}{\to} \Omega_h^{(1)} \stackrel{\text{curl}}{\to} \Omega_h^{(2)} \stackrel{\text{diy}}{\to} \Omega_h^{(3)} \to 0. \end{split}$$

Therefore, mimetic methods are also called structure-preserving or compatible methods.

Hybrid Mimetic Spectral Element Method^{4,5,6} is a high order mimetic mixed finite element method.

^{4.} Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.

^{5.} Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics, (2013) 240 : 284-309.

^{6.} Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.

Introduction	Hybrid mixed formulation	Basis functions and discretization	
000			
Broken Sobolev spaces			

Broken Sobolev spaces

Given an open bounded domain $\Omega \subset \mathbb{R}^d$ with Lipschitz boundary $\partial\Omega$. A mesh, denoted by Ω_h , partitions Ω into K disjoint open elements Ω_k with Lipschitz boundary $\partial\Omega_k$,

$$\bar{\Omega} = \bigcup_{k=1}^{K} \bar{\Omega}_k, \ \Omega_i \cap \Omega_j = \emptyset, \ 1 \le i \ne j \le K.$$

We can break $H^1(\Omega)$, $H(\text{div}, \Omega)$ and obtain the so-called broken Sobolev spaces⁷ :

$$H^{1}(\Omega_{h}) = \left\{ \left. \varphi \in L^{2}(\Omega) \right| \left. \varphi \right|_{\Omega_{k}} \in H^{1}(\Omega_{k}) \right\} = \prod_{k=1}^{K} H^{1}(\Omega_{k}),$$
$$H(\operatorname{div}, \Omega_{h}) = \left\{ \left. u \in \left[L^{2}(\Omega) \right]^{d} \right| \left. u \right|_{\Omega_{k}} \in H(\operatorname{div}, \Omega_{k}) \right\} = \prod_{k=1}^{K} H(\operatorname{div}, \Omega_{k})$$

Spaces for interface functions are then defined as

$$H^{1/2}(\partial\Omega_h) := \operatorname{tr}_{\operatorname{grad}}^h H^1(\Omega), \qquad H^{-1/2}(\partial\Omega_h) := \operatorname{tr}_{\operatorname{div}}^h H(\operatorname{div}, \Omega),$$

where trace operators $\operatorname{tr}_{\operatorname{grad}}^{h}$ and $\operatorname{tr}_{\operatorname{div}}^{h}$ restrict $\varphi \in H^{1}(\Omega)$ and $u \in H(\operatorname{div}, \Omega)$ respectively onto $\partial \Omega_{h} = \bigcup_{k=1}^{K} \partial \Omega_{k}$.

^{7.} Carstensen, C., Demkowicz, L. and Gopalakrishnan, J. Breaking spaces and forms for the DPG method and applications including Maxwell equations. Computers and Mathematics with Applications, (2016) 72(3) : 494-522.

Introduction	Hybrid mixed formulation	Basis functions and discretization	
000			
Broken Sobolev spaces			

Broken Sobolev spaces

Given an open bounded domain $\Omega \subset \mathbb{R}^d$ with Lipschitz boundary $\partial\Omega$. A mesh, denoted by Ω_h , partitions Ω into *K* disjoint open elements Ω_k with Lipschitz boundary $\partial\Omega_k$,

$$\bar{\Omega} = \bigcup_{k=1}^{K} \bar{\Omega}_{k}, \ \Omega_{i} \cap \Omega_{j} = \emptyset, \ 1 \leq i \neq j \leq K.$$

We can break $H^1(\Omega)$, $H(\operatorname{div}, \Omega)$ and obtain the so-called broken Sobolev spaces⁷ :

$$H^{1}(\Omega_{h}) = \left\{ \left. \varphi \in L^{2}(\Omega) \right| \left. \varphi \right|_{\Omega_{k}} \in H^{1}(\Omega_{k}) \right\} = \prod_{k=1}^{K} H^{1}(\Omega_{k}),$$
$$H(\operatorname{div}, \Omega_{h}) = \left\{ \left. \boldsymbol{u} \in \left[L^{2}(\Omega) \right]^{d} \right| \left. \boldsymbol{u} \right|_{\Omega_{k}} \in H(\operatorname{div}, \Omega_{k}) \right\} = \prod_{k=1}^{K} H(\operatorname{div}, \Omega_{k}).$$

Spaces for interface functions are then defined as

$$H^{1/2}(\partial\Omega_h) := \operatorname{tr}_{\operatorname{grad}}^h H^1(\Omega), \qquad H^{-1/2}(\partial\Omega_h) := \operatorname{tr}_{\operatorname{div}}^h H(\operatorname{div}, \Omega),$$

where trace operators $\operatorname{tr}_{\operatorname{erad}}^{h}$ and $\operatorname{tr}_{\operatorname{div}}^{h}$ restrict $\varphi \in H^{1}(\Omega)$ and $u \in H(\operatorname{div}, \Omega)$ respectively onto $\partial \Omega_{h} = \bigcup_{k=1}^{K} \partial \Omega_{k}$.

^{7.} Carstensen, C., Demkowicz, L. and Gopalakrishnan, J. Breaking spaces and forms for the DPG method and applications including Maxwell equations. Computers and Mathematics with Applications, (2016) 72(3) : 494-522.

Introduction	Hybrid mixed formulation	Basis functions and discretization	
000			
Broken Sobolev spaces			

Broken Sobolev spaces

Given an open bounded domain $\Omega \subset \mathbb{R}^d$ with Lipschitz boundary $\partial\Omega$. A mesh, denoted by Ω_h , partitions Ω into *K* disjoint open elements Ω_k with Lipschitz boundary $\partial\Omega_k$,

$$\bar{\Omega} = \bigcup_{k=1}^{K} \bar{\Omega}_{k}, \ \Omega_{i} \cap \Omega_{j} = \emptyset, \ 1 \leq i \neq j \leq K.$$

We can break $H^1(\Omega)$, $H(\operatorname{div}, \Omega)$ and obtain the so-called broken Sobolev spaces⁷ :

$$H^{1}(\Omega_{h}) = \left\{ \left. \varphi \in L^{2}(\Omega) \right| \left. \varphi \right|_{\Omega_{k}} \in H^{1}(\Omega_{k}) \right\} = \prod_{k=1}^{K} H^{1}(\Omega_{k}),$$
$$H(\operatorname{div}, \Omega_{h}) = \left\{ \left. \boldsymbol{u} \in \left[L^{2}(\Omega) \right]^{d} \right| \left. \boldsymbol{u} \right|_{\Omega_{k}} \in H(\operatorname{div}, \Omega_{k}) \right\} = \prod_{k=1}^{K} H(\operatorname{div}, \Omega_{k}).$$

Spaces for interface functions are then defined as

$$H^{1/2}(\partial \Omega_h) := \operatorname{tr}_{\operatorname{grad}}^h H^1(\Omega), \qquad H^{-1/2}(\partial \Omega_h) := \operatorname{tr}_{\operatorname{div}}^h H(\operatorname{div}, \Omega),$$

where trace operators $\operatorname{tr}_{\operatorname{grad}}^{h}$ and $\operatorname{tr}_{\operatorname{div}}^{h}$ restrict $\varphi \in H^{1}(\Omega)$ and $u \in H(\operatorname{div}, \Omega)$ respectively onto $\partial \Omega_{h} = \bigcup_{k=1}^{K} \partial \Omega_{k}$.

^{7.} Carstensen, C., Demkowicz, L. and Gopalakrishnan, J. Breaking spaces and forms for the DPG method and applications including Maxwell equations. Computers and Mathematics with Applications, (2016) 72(3) : 494-522.

Introduction	Hybrid mixed formulation	Basis functions and discretization	
	• O		

Mixed formulation

We consider the constrained minimization problem,

$$\arg_{\boldsymbol{u}\in L^2(\Omega)} \min_{\operatorname{div}\boldsymbol{u}=-f} \frac{1}{2} (\boldsymbol{u},\boldsymbol{u})_{L^2(\Omega)},$$

where *f* is given. By introducing a Lagrange multiplier φ , we can rewrite this constrained minimization problem into a saddle-point problem for $(u, \varphi) \in H(\operatorname{div}, \Omega) \times H^1(\Omega)$:

$$\mathcal{L}(u,\varphi;f,\phi) = \frac{1}{2} (u,u)_{L^2(\Omega)} + (\varphi,\operatorname{div} u + f)_{L^2(\Omega)} - (\phi,\operatorname{tr}_{\operatorname{div}} u)_{L^2(\partial\Omega)},$$

where $\hat{\varphi} = \operatorname{tr}_{\operatorname{grad}} \varphi \in H^{1/2}(\partial\Omega)$ and $f \in L^2(\Omega)$ is given. Variational analysis on this functional gives rise to the mixed formulation : *Find* $(u, \varphi) \in H(\operatorname{div}, \Omega) \times H^1(\Omega)$ *such that*

$$\begin{array}{ll} ((u, v)_{L^2(\Omega)} + (\varphi, \operatorname{div} v)_{L^2(\Omega)} & = (\varphi, \operatorname{tr}_{\operatorname{div}} v)_{L^2(\partial\Omega)} \\ ((\psi, \operatorname{div} u)_{L^2(\Omega)} & = -(\psi, f)_{L^2(\Omega)} \end{array}$$

for all $(v, \psi) \in H(\operatorname{div}, \Omega) \times H^1(\Omega)$. This is a weak mixed formulation of the Poisson equation.

Introduction	Hybrid mixed formulation	Basis functions and discretization	
	• O		

Mixed formulation

We consider the constrained minimization problem,

$$\arg_{\boldsymbol{u}\in L^2(\Omega)} \min_{\operatorname{div}\boldsymbol{u}=-f} \frac{1}{2} (\boldsymbol{u},\boldsymbol{u})_{L^2(\Omega)},$$

where *f* is given. By introducing a Lagrange multiplier φ , we can rewrite this constrained minimization problem into a saddle-point problem for $(u, \varphi) \in H(\text{div}, \Omega) \times H^1(\Omega)$:

$$\mathcal{L}(\boldsymbol{u},\boldsymbol{\varphi};f,\boldsymbol{\hat{\varphi}}) = \frac{1}{2} \left(\boldsymbol{u},\boldsymbol{u}\right)_{L^{2}(\Omega)} + \left(\boldsymbol{\varphi},\operatorname{div}\boldsymbol{u}+f\right)_{L^{2}(\Omega)} - \left(\boldsymbol{\hat{\varphi}},\operatorname{tr}_{\operatorname{div}}\boldsymbol{u}\right)_{L^{2}(\partial\Omega)},$$

where $\hat{\varphi} = \text{tr}_{\text{grad}} \ \varphi \in H^{1/2}(\partial\Omega)$ and $f \in L^2(\Omega)$ is given. Variational analysis on this functional gives rise to the mixed formulation : *Find* $(u, \varphi) \in H(\text{div}, \Omega) \times H^1(\Omega)$ *such that*

$$\begin{cases} (u, v)_{L^2(\Omega)} + (\varphi, \operatorname{div} v)_{L^2(\Omega)} &= (\hat{\varphi}, \operatorname{tr}_{\operatorname{div}} v)_{L^2(\partial\Omega)} \\ (\psi, \operatorname{div} u)_{L^2(\Omega)} &= -(\psi, f)_{L^2(\Omega)} \end{cases}$$

for all $(v, \psi) \in H(\operatorname{div}, \Omega) \times H^1(\Omega)$. This is a weak mixed formulation of the Poisson equation.

Introduction	Hybrid mixed formulation	Basis functions and discretization	
	•0		

Mixed formulation

We consider the constrained minimization problem,

$$\underset{\boldsymbol{u}\in L^{2}(\Omega)}{\operatorname{arg}} \min_{\operatorname{div}\boldsymbol{u}=-f} \frac{1}{2} (\boldsymbol{u},\boldsymbol{u})_{L^{2}(\Omega)},$$

where *f* is given. By introducing a Lagrange multiplier φ , we can rewrite this constrained minimization problem into a saddle-point problem for $(u, \varphi) \in H(\text{div}, \Omega) \times H^1(\Omega)$:

$$\mathcal{L}(\boldsymbol{u},\varphi;f,\hat{\varphi}) = \frac{1}{2} (\boldsymbol{u},\boldsymbol{u})_{L^{2}(\Omega)} + (\varphi,\operatorname{div}\boldsymbol{u}+f)_{L^{2}(\Omega)} - (\hat{\varphi},\operatorname{tr}_{\operatorname{div}}\boldsymbol{u})_{L^{2}(\partial\Omega)},$$

where $\hat{\varphi} = \text{tr}_{\text{grad}} \ \varphi \in H^{1/2}(\partial\Omega)$ and $f \in L^2(\Omega)$ is given. Variational analysis on this functional gives rise to the mixed formulation : *Find* $(\boldsymbol{u}, \varphi) \in H(\text{div}, \Omega) \times H^1(\Omega)$ *such that*

$$\begin{cases} (\boldsymbol{u}, \boldsymbol{v})_{L^{2}(\Omega)} + (\varphi, \operatorname{div} \boldsymbol{v})_{L^{2}(\Omega)} &= (\hat{\varphi}, \operatorname{tr}_{\operatorname{div}} \boldsymbol{v})_{L^{2}(\partial\Omega)} \\ (\psi, \operatorname{div} \boldsymbol{u})_{L^{2}(\Omega)} &= -(\psi, f)_{L^{2}(\Omega)} \end{cases}$$

for all $(v, \psi) \in H(\operatorname{div}, \Omega) \times H^1(\Omega)$. This is a weak mixed formulation of the Poisson equation.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
	00		

Hybrid mixed formulation

If we set up a mesh Ω_h in Ω , by breaking u and φ into broken spaces, $H(\text{div}, \Omega_h)$ and $H^1(\Omega_h)$, and introducing a new Lagrange multiplier $\check{\varphi}$ in the interface space $H^{1/2}(\partial\Omega_h \setminus \partial\Omega)$, we can rewrite the functional as

$$\mathcal{L}(\boldsymbol{u},\boldsymbol{\varphi},\check{\boldsymbol{\varphi}};f,\hat{\boldsymbol{\varphi}}) = \frac{1}{2} (\boldsymbol{u},\boldsymbol{u})_{L^{2}(\Omega)} + (\boldsymbol{\varphi},\operatorname{div}\boldsymbol{u}+f)_{L^{2}(\Omega)} - (\check{\boldsymbol{\varphi}},\operatorname{tr}_{\operatorname{div}}\boldsymbol{u})_{L^{2}(\partial\Omega_{h}\setminus\partial\Omega)} - (\hat{\boldsymbol{\varphi}},\operatorname{tr}_{\operatorname{div}}\boldsymbol{u})_{L^{2}(\partial\Omega)} \cdot (\hat{\boldsymbol{\varphi}},\operatorname{tr}_{\operatorname{div}}\boldsymbol{u})_{L^{2}(\partial\Omega)} \cdot$$

The interface variable $\check{\phi}$ serves as the Lagrange multiplier which enforces the continuity at the internal interface $\partial \Omega_h \setminus \partial \Omega$.

From this new functional, we can obtain the hybrid mixed formulation for the Poisson problem written as : Given $f \in L^2(\Omega)$ and $\hat{\varphi} = \operatorname{tr}_{\operatorname{grad}} \varphi \in H^{1/2}(\partial\Omega)$, find $(u, \varphi, \check{\varphi}) \in H(\operatorname{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial\Omega_h \setminus \partial\Omega)$ such that

$$\begin{aligned} &(u, v)_{L^{2}(\Omega)} + (\varphi, \operatorname{div} v)_{L^{2}(\Omega)} - (\tilde{\varphi}, \operatorname{tr}_{\operatorname{div}} v)_{L^{2}(\partial\Omega_{h} \setminus \partial\Omega)} &= (\hat{\varphi}, \operatorname{tr}_{\operatorname{div}} v)_{L^{2}(\partial\Omega)} \\ &(\psi, \operatorname{div} u)_{L^{2}(\Omega)} &= -(\psi, f)_{L^{2}(\Omega)} \\ &(-(\check{\psi}, \operatorname{tr}_{\operatorname{div}} u)_{L^{2}(\partial\Omega_{h} \setminus \partial\Omega)} &= 0 \end{aligned}$$

for all $(v, \psi, \check{\psi}) \in H(\operatorname{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial \Omega_h \setminus \partial \Omega)$. It is easy to prove that the interface variable $\check{\varphi}$ represents the restriction of φ onto $\partial \Omega_h \setminus \partial \Omega$.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
	00		

Hybrid mixed formulation

If we set up a mesh Ω_h in Ω , by breaking u and φ into broken spaces, $H(\text{div}, \Omega_h)$ and $H^1(\Omega_h)$, and introducing a new Lagrange multiplier $\check{\varphi}$ in the interface space $H^{1/2}(\partial\Omega_h \setminus \partial\Omega)$, we can rewrite the functional as

$$\mathcal{L}(\boldsymbol{u},\boldsymbol{\varphi},\check{\boldsymbol{\varphi}};f,\hat{\boldsymbol{\varphi}}) = \frac{1}{2} (\boldsymbol{u},\boldsymbol{u})_{L^{2}(\Omega)} + (\boldsymbol{\varphi},\operatorname{div}\boldsymbol{u}+f)_{L^{2}(\Omega)} - (\check{\boldsymbol{\varphi}},\operatorname{tr}_{\operatorname{div}}\boldsymbol{u})_{L^{2}(\partial\Omega_{h}\setminus\partial\Omega)} - (\hat{\boldsymbol{\varphi}},\operatorname{tr}_{\operatorname{div}}\boldsymbol{u})_{L^{2}(\partial\Omega)} \cdot (\hat{\boldsymbol{\varphi}},\operatorname{tr}_{\operatorname{div}}\boldsymbol{u})_{L^{2}(\partial\Omega)} \cdot$$

The interface variable $\check{\phi}$ serves as the Lagrange multiplier which enforces the continuity at the internal interface $\partial \Omega_h \setminus \partial \Omega$.

From this new functional, we can obtain the hybrid mixed formulation for the Poisson problem written as : *Given* $f \in L^2(\Omega)$ and $\hat{\varphi} = \operatorname{tr}_{\operatorname{grad}} \varphi \in H^{1/2}(\partial\Omega)$, find $(\boldsymbol{u}, \varphi, \check{\varphi}) \in H(\operatorname{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial\Omega_h \setminus \partial\Omega)$ such that

$$\begin{cases} (\boldsymbol{u}, \boldsymbol{v})_{L^{2}(\Omega)} + (\varphi, \operatorname{div} \boldsymbol{v})_{L^{2}(\Omega)} - (\check{\varphi}, \operatorname{tr}_{\operatorname{div}} \boldsymbol{v})_{L^{2}(\partial\Omega_{h} \setminus \partial\Omega)} &= (\hat{\varphi}, \operatorname{tr}_{\operatorname{div}} \boldsymbol{v})_{L^{2}(\partial\Omega)} \\ (\psi, \operatorname{div} \boldsymbol{u})_{L^{2}(\Omega)} &= -(\psi, f)_{L^{2}(\Omega)} \\ -(\check{\psi}, \operatorname{tr}_{\operatorname{div}} \boldsymbol{u})_{L^{2}(\partial\Omega_{h} \setminus \partial\Omega)} &= 0 \end{cases}$$

for all $(v, \psi, \check{\psi}) \in H(\operatorname{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial \Omega_h \setminus \partial \Omega)$. It is easy to prove that the interface variable $\check{\varphi}$ represents the restriction of φ onto $\partial \Omega_h \setminus \partial \Omega$.

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		0000000	
Mimetic basis functions and their dual representation			

Let $-1 = \xi_0 < \xi_1 < \cdots < \xi_N = 1$ be a partitioning of the interval [-1, 1]. The associated Lagrange polynomials are

$$h_i(\xi), \ \xi \in [-1,1], \ i = 0, 1, \cdots, N,$$

which satisfy $h_i(\xi_j) = \delta_{i,j}$, where $\delta_{i,j}$ is the Kronecker delta. The corresponding edge functions are then defined as,

$$e_i(\xi) = -\sum_{k=0}^{i-1} rac{\mathrm{d}h_k(\xi)}{\mathrm{d}\xi} = \sum_{k=i}^N rac{\mathrm{d}h_k(\xi)}{\mathrm{d}\xi}, \ i = 1, 2, \cdots, N,$$

which satisfy $\int_{\xi_{j-1}}^{\xi_j} e_i(\xi) = \delta_{i,j}$.

Clearly, in \mathbb{R}^2 , finite dimensional spaces spanned by basis functions $\{h_i(\xi)e_j(\eta), e_i(\xi)h_j(\eta)\}$ and $\{e_i(\xi)e_j(\eta)\}$ satisfy the De Rham complex. Let vector-valued function u and scalar-valued function f be spanned into

$$u_{h} = \left(\sum_{i=0}^{N} \sum_{j=1}^{N} u_{i,j} h_{i}(\xi) e_{j}(\eta), \sum_{i=1}^{N} \sum_{j=0}^{N} v_{i,j} e_{i}(\xi) h_{j}(\eta)\right) \quad \text{and} \quad f_{h} = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{i,j} e_{i}(\xi) e_{j}(\eta)$$

If $f = \operatorname{div} \boldsymbol{u}$, then $f_h = \operatorname{div} \boldsymbol{u}_h$ and

$$f_h = \sum_{i=1}^N \sum_{j=1}^N \left(u_{i,j} - u_{i-1,j} + v_{i,j} - v_{i,j-1} \right) e_i(\xi) e_j(\eta),$$

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		0000000	
Mimetic basis functions and their dual representation			

Let $-1 = \xi_0 < \xi_1 < \cdots < \xi_N = 1$ be a partitioning of the interval [-1, 1]. The associated Lagrange polynomials are

$$h_i(\xi), \ \xi \in [-1,1], \ i = 0, 1, \cdots, N,$$

which satisfy $h_i(\xi_j) = \delta_{i,j}$, where $\delta_{i,j}$ is the Kronecker delta. The corresponding edge functions are then defined as,

$$e_i(\xi) = -\sum_{k=0}^{i-1} rac{\mathrm{d}h_k(\xi)}{\mathrm{d}\xi} = \sum_{k=i}^N rac{\mathrm{d}h_k(\xi)}{\mathrm{d}\xi}, \ i = 1, 2, \cdots, N,$$

which satisfy $\int_{\xi_{j-1}}^{\xi_j} e_i(\xi) = \delta_{i,j}$.

Clearly, in \mathbb{R}^2 , finite dimensional spaces spanned by basis functions $\{h_i(\xi)e_j(\eta), e_i(\xi)h_j(\eta)\}$ and $\{e_i(\xi)e_j(\eta)\}$ satisfy the De Rham complex. Let vector-valued function u and scalar-valued function f be spanned into

$$\boldsymbol{u}_{h} = \left(\sum_{i=0}^{N} \sum_{j=1}^{N} u_{i,j} h_{i}(\xi) e_{j}(\eta), \sum_{i=1}^{N} \sum_{j=0}^{N} v_{i,j} e_{i}(\xi) h_{j}(\eta)\right) \text{ and } f_{h} = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{i,j} e_{i}(\xi) e_{j}(\eta)$$

If $f = \operatorname{div} \boldsymbol{u}$, then $f_h = \operatorname{div} \boldsymbol{u}_h$ and

$$f_h = \sum_{i=1}^N \sum_{j=1}^N \left(u_{i,j} - u_{i-1,j} + v_{i,j} - v_{i,j-1} \right) e_i(\xi) e_j(\eta).$$

Introduction	Hybrid mixed formulation	Basis functions and discretization	
000	00	0000000	0000
Mimetic basis functions and their dual representation			

FIGURE – Reference domain.

Let vector-valued function u and scalar-valued function f be spanned into

$$u_{h} = \left(\sum_{i=0}^{N}\sum_{j=1}^{N}u_{i,j}h_{i}(\xi)e_{j}(\eta), \sum_{i=1}^{N}\sum_{j=0}^{N}v_{i,j}e_{i}(\xi)h_{j}(\eta)\right), f_{h} = \sum_{i=1}^{N}\sum_{j=1}^{N}f_{i,j}e_{i}(\xi)e_{j}(\eta).$$

If $f = \operatorname{div} \boldsymbol{u}$, then

$$f_h = \operatorname{div} u_h = \sum_{i=1}^N \sum_{j=1}^N \left(u_{i,j} - u_{i-1,j} + v_{i,j} - v_{i,j-1} \right) e_i(\xi) e_j(\eta).$$

Collect all equations and write them in vector form, we have

 $\underline{f} = \mathbb{E}^{2,1}\underline{u},$

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		000000	
Mimetic basis functions and their dual representation			

FIGURE – Reference domain.

Let vector-valued function u and scalar-valued function f be spanned into

$$u_{h} = \left(\sum_{i=0}^{N}\sum_{j=1}^{N}u_{i,j}h_{i}(\xi)e_{j}(\eta), \sum_{i=1}^{N}\sum_{j=0}^{N}v_{i,j}e_{i}(\xi)h_{j}(\eta)\right), f_{h} = \sum_{i=1}^{N}\sum_{j=1}^{N}f_{i,j}e_{i}(\xi)e_{j}(\eta).$$

If $f = \operatorname{div} u$, then

$$f_h = \operatorname{div} u_h = \sum_{i=1}^N \sum_{j=1}^N \left(u_{i,j} - u_{i-1,j} + v_{i,j} - v_{i,j-1} \right) e_i(\xi) e_j(\eta).$$

Collect all equations and write them in vector form, we have

 $\underline{f} = \mathbb{E}^{2,1}\underline{u},$

where

	(-1	1	0	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	0	0	0	0	0 \
	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	0	0	0	0
	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	0	0	0
	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	0	0
$E^{2,1} =$	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	0
	0	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0
	0	0	0	0	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0
	0	0	0	0	0	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1 /

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		0000000	
Mimetic basis functions and their dual representation			

FIGURE – Curvilinear domain.

Let vector-valued function u and scalar-valued function f be spanned into

$$u_{h} = \left(\sum_{i=0}^{N}\sum_{j=1}^{N}u_{i,j}h_{i}(\xi)e_{j}(\eta), \sum_{i=1}^{N}\sum_{j=0}^{N}v_{i,j}e_{i}(\xi)h_{j}(\eta)\right), f_{h} = \sum_{i=1}^{N}\sum_{j=1}^{N}f_{i,j}e_{i}(\xi)e_{j}(\eta).$$

If $f = \operatorname{div} u$, then

$$f_h = \operatorname{div} u_h = \sum_{i=1}^N \sum_{j=1}^N (u_{i,j} - u_{i-1,j} + v_{i,j} - v_{i,j-1}) e_i(\xi) e_j(\eta).$$

Collect all equations and write them in vector form, we have

 $\underline{f} = \mathbb{E}^{2,1}\underline{u},$

where

	(-1	1	0	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	0	0	0	0	0 \
	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	0	0	0	0
	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	0	0	0
	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	0	0
$E^{2,1} =$	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	0
	0	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0
	0	0	0	0	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0
	0	0	0	0	0	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1 /

Introduction	Hybrid mixed formulation	Basis functions and discretization					
		000000					
Mimetic basis functions and their dual representation							

Mimetic trace basis functions

The trace variable $tr_{div}u$ can be discretized as

$$\mathrm{tr}_{\mathrm{div}} \boldsymbol{u}_h = \left\{ \sum_{i=1}^N v_i^{\mathsf{s}} e_i(\xi), \ \sum_{i=1}^N v_i^{\mathsf{n}} e_i(\xi), \ \sum_{i=1}^N u_i^{\mathsf{w}} e_i(\eta), \ \sum_{i=1}^N u_i^{\mathsf{e}} e_i(\eta) \right\}.$$

There is a linear operator, \mathbb{N} , such that

 $\underline{u}_{tr} = \mathbb{N}\underline{u},$

where $\underline{u}_{tr} = (-\underline{v}_i^s, \underline{v}_i^n, -\underline{u}_i^w, \underline{u}_i^e)^T$ and

FIGURE – Curvilinear domain.

Introduction	Hybrid mixed formulation	Basis functions and discretization					
		000000					
Mimetic basis functions and their dual representation							

Mimetic trace basis functions

The trace variable $tr_{div}u$ can be discretized as

$$\operatorname{tr}_{\operatorname{div}} \boldsymbol{u}_{h} = \left\{ \sum_{i=1}^{N} v_{i}^{\mathsf{s}} e_{i}(\xi), \sum_{i=1}^{N} v_{i}^{\mathsf{n}} e_{i}(\xi), \sum_{i=1}^{N} u_{i}^{\mathsf{w}} e_{i}(\eta), \sum_{i=1}^{N} u_{i}^{\mathsf{e}} e_{i}(\eta) \right\}.$$

There is a linear operator, \mathbb{N} , such that

 $\underline{u}_{tr} = \mathbb{N}\underline{u},$

where $\underline{u}_{tr} = (-\underline{v}_i^s, \underline{v}_i^n, -\underline{u}_i^w, \underline{u}_i^e)^T$ and

	(0	0	0	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	0	0	0	0	0	0	0	0	0 `
	0	0	0	0	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
D. I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
IN =	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	$^{-1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	$^{-1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1 0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

FIGURE – Curvilinear domain.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions				
		0000000					
Mimetic basis functions and their dual representation							

Let scalar functions p_h and q_h be expanded in terms of $\{e_i(\xi)e_j(\eta)\}$,

$$(p_h, q_h)_{L^2(\Omega_{\text{ref}})} = \int_{\Omega_{\text{ref}}} p_h(\xi, \eta) q_h(\xi, \eta) \mathrm{d}\xi \mathrm{d}\eta = \underline{p}^T \mathbb{M}^{(2)} \underline{q},$$

where $\mathbb{M}^{(2)}$ is the mass matrix. We define the dual basis functions ⁸ as

$$\left[e_1(\widetilde{\xi})e_1(\eta),\cdots,e_N(\widetilde{\xi})e_N(\eta)\right] := \left[e_1(\xi)e_1(\eta),\cdots,e_N(\xi)e_N(\eta)\right] \mathbb{M}^{(2)^{-1}}$$

if we expand p_h in terms of the dual basis functions $\{e_i(\xi)e_j(\eta)\}$, we have

$$(p_h, q_h)_{L^2(\Omega_{\mathrm{ref}})} = \underline{\tilde{p}}^T \underline{q},$$

where $\underline{p} = \mathbb{M}^{(2)}\underline{p}$. Furthermore, if $q_h = \text{div } v_h$, and v_h is expanded by basis functions $\{h_i(\xi)e_j(\eta), e_i(\xi)h_j(\eta)\}$, we have

$$(\tilde{p}_h, \operatorname{div} v_h)_{L^2(\Omega_{\operatorname{ref}})} = \underline{\tilde{p}}^T \mathbb{E}^{2,1} \underline{v}_h$$

The same idea can be applied to trace basis functions.

^{8.} Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017) arXiv:1712.09472.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions			
		0000000				
Mimetic basis functions and their dual representation						

Let scalar functions p_h and q_h be expanded in terms of $\{e_i(\xi)e_j(\eta)\}$,

$$(p_h, q_h)_{L^2(\Omega_{\text{ref}})} = \int_{\Omega_{\text{ref}}} p_h(\xi, \eta) q_h(\xi, \eta) \mathrm{d}\xi \mathrm{d}\eta = \underline{p}^T \mathbb{M}^{(2)} \underline{q},$$

where $\mathbb{M}^{(2)}$ is the mass matrix. We define the dual basis functions 8 as

$$\left[\widetilde{e_1(\xi)e_1(\eta)},\cdots, e_N(\widetilde{\xi)e_N(\eta)}\right] := \left[e_1(\xi)e_1(\eta),\cdots, e_N(\xi)e_N(\eta)\right] \mathbf{M}^{(2)^{-1}}$$

if we expand p_h in terms of the dual basis functions $\{e_i(\tilde{\zeta})e_j(\eta)\}$, we have

$$(p_h, q_h)_{L^2(\Omega_{\mathrm{ref}})} = \underline{\tilde{p}}^T \underline{q},$$

where $\underline{p} = \mathbb{M}^{(2)}\underline{p}$. Furthermore, if $q_h = \text{div } v_h$, and v_h is expanded by basis functions $\{h_i(\xi)e_j(\eta), e_i(\xi)h_j(\eta)\}$, we have

$$(\tilde{p}_h, \operatorname{div} v_h)_{L^2(\Omega_{\operatorname{ref}})} = \underline{\tilde{p}}^T \mathbb{E}^{2,1} \underline{v}.$$

The same idea can be applied to trace basis functions.

^{8.} Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017) arXiv :1712.09472.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions			
		0000000				
Mimetic basis functions and their dual representation						

Let scalar functions p_h and q_h be expanded in terms of $\{e_i(\xi)e_j(\eta)\}$,

$$(p_h, q_h)_{L^2(\Omega_{\text{ref}})} = \int_{\Omega_{\text{ref}}} p_h(\xi, \eta) q_h(\xi, \eta) \mathrm{d}\xi \mathrm{d}\eta = \underline{p}^T \mathbb{M}^{(2)} \underline{q},$$

where $\mathbb{M}^{(2)}$ is the mass matrix. We define the dual basis functions 8 as

$$\left[\widetilde{e_1(\xi)e_1(\eta)},\cdots, e_N(\widetilde{\xi)e_N(\eta)}\right] := \left[e_1(\xi)e_1(\eta),\cdots, e_N(\xi)e_N(\eta)\right] \mathbf{M}^{(2)^{-1}}$$

if we expand p_h in terms of the dual basis functions $\{e_i(\xi)e_j(\eta)\}$, we have

$$(p_h,q_h)_{L^2(\Omega_{\mathrm{ref}})}=\underline{\tilde{p}}^T\underline{q},$$

where $\underline{\tilde{p}} = \mathbb{M}^{(2)} \underline{p}$. Furthermore, if $q_h = \text{div } v_h$, and v_h is expanded by basis functions $\{h_i(\xi)e_j(\eta), e_i(\xi)h_j(\eta)\}$, we have

$$(\tilde{p}_h, \operatorname{div} v_h)_{L^2(\Omega_{\operatorname{ref}})} = \underline{\tilde{p}}^T \mathbb{E}^{2,1} \underline{v}.$$

The same idea can be applied to trace basis functions.

^{8.} Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017) arXiv :1712.09472.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions			
		0000000				
Mimetic basis functions and their dual representation						

Let scalar functions p_h and q_h be expanded in terms of $\{e_i(\xi)e_j(\eta)\}$,

$$(p_h, q_h)_{L^2(\Omega_{\text{ref}})} = \int_{\Omega_{\text{ref}}} p_h(\xi, \eta) q_h(\xi, \eta) \mathrm{d}\xi \mathrm{d}\eta = \underline{p}^T \mathbb{M}^{(2)} \underline{q},$$

where $\mathbb{M}^{(2)}$ is the mass matrix. We define the dual basis functions 8 as

$$\left[\widetilde{e_1(\xi)e_1(\eta)},\cdots, e_N(\widetilde{\xi)e_N(\eta)}\right] := \left[e_1(\xi)e_1(\eta),\cdots, e_N(\xi)e_N(\eta)\right] \mathbf{M}^{(2)^{-1}}$$

if we expand p_h in terms of the dual basis functions $\{e_i(\xi)e_j(\eta)\}$, we have

$$(p_h,q_h)_{L^2(\Omega_{\mathrm{ref}})}=\underline{\tilde{p}}^T\underline{q},$$

where $\underline{\tilde{p}} = \mathbb{M}^{(2)}\underline{p}$. Furthermore, if $q_h = \text{div } v_h$, and v_h is expanded by basis functions $\{h_i(\xi)e_j(\eta), e_i(\xi)h_j(\eta)\}$, we have

$$(\tilde{p}_h, \operatorname{div} v_h)_{L^2(\Omega_{\operatorname{ref}})} = \underline{\tilde{p}}^T \mathbb{E}^{2,1} \underline{v}$$

The same idea can be applied to trace basis functions.

^{8.} Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017) arXiv :1712.09472.

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		0000000	
Discretization			

Hybrid mixed formulation

Given $f \in L^2(\Omega)$ and $\hat{\varphi} = \operatorname{tr}_{\operatorname{grad}} \varphi \in H^{1/2}(\partial\Omega)$, find $(u, \varphi, \check{\varphi}) \in H(\operatorname{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial\Omega_h \setminus \partial\Omega)$ such that

 $\begin{cases} (\boldsymbol{u},\boldsymbol{v})_{L^{2}(\Omega)} + (\varphi,\operatorname{div}\boldsymbol{v})_{L^{2}(\Omega)} - (\check{\varphi},\operatorname{tr}_{\operatorname{div}}\boldsymbol{v})_{L^{2}(\partial\Omega_{h}\setminus\partial\Omega)} &= (\hat{\varphi},\operatorname{tr}_{\operatorname{div}}\boldsymbol{v})_{L^{2}(\partial\Omega)} \\ (\psi,\operatorname{div}\boldsymbol{u})_{L^{2}(\Omega)} &= -(\psi,f)_{L^{2}(\Omega)} &, \\ -(\check{\psi},\operatorname{tr}_{\operatorname{div}}\boldsymbol{u})_{L^{2}(\partial\Omega_{h}\setminus\partial\Omega)} &= 0 \end{cases}$

for all $(\boldsymbol{v}, \boldsymbol{\psi}, \boldsymbol{\psi}) \in H(\operatorname{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial \Omega_h \setminus \partial \Omega).$

We choose finite dimensional spaces spanned by following basis functions for the discretization :

- $\blacksquare \{h_i(\xi)e_j(\eta), e_i(\xi)h_j(\eta)\} \to H(\operatorname{div}, \Omega_h).$
- $= \left\{ \widetilde{e_i(\xi)e_j(\eta)} \right\} \to H^1(\Omega_h).$
- $\blacksquare \left\{ \widetilde{e_i(s)} \right\} \to H^{1/2}(\partial \Omega_h).$
- $= \{e_i(\xi)e_j(\eta)\} \to L^2(\Omega_h).$

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		0000000	
Discretization			

Hybrid mixed formulation

Given $f \in L^2(\Omega)$ and $\hat{\varphi} = \operatorname{tr}_{\operatorname{grad}} \varphi \in H^{1/2}(\partial\Omega)$, find $(\boldsymbol{u}, \varphi, \check{\varphi}) \in H(\operatorname{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial\Omega_h \setminus \partial\Omega)$ such that

 $\begin{cases} (\boldsymbol{u}, \boldsymbol{v})_{L^{2}(\Omega)} + (\varphi, \operatorname{div} \boldsymbol{v})_{L^{2}(\Omega)} - (\check{\varphi}, \operatorname{tr}_{\operatorname{div}} \boldsymbol{v})_{L^{2}(\partial\Omega_{h} \setminus \partial\Omega)} &= (\hat{\varphi}, \operatorname{tr}_{\operatorname{div}} \boldsymbol{v})_{L^{2}(\partial\Omega)} \\ (\psi, \operatorname{div} \boldsymbol{u})_{L^{2}(\Omega)} &= -(\psi, f)_{L^{2}(\Omega)} \\ -(\check{\psi}, \operatorname{tr}_{\operatorname{div}} \boldsymbol{u})_{L^{2}(\partial\Omega_{h} \setminus \partial\Omega)} &= 0 \end{cases}$

for all $(\boldsymbol{v}, \boldsymbol{\psi}, \boldsymbol{\psi}) \in H(\operatorname{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial \Omega_h \setminus \partial \Omega).$

We choose finite dimensional spaces spanned by following basis functions for the discretization :

- $\blacksquare \{h_i(\xi)e_j(\eta), e_i(\xi)h_j(\eta)\} \to H(\operatorname{div}, \Omega_h).$
- $\blacksquare \left\{ \widetilde{e_i(\xi)e_j(\eta)} \right\} \to H^1(\Omega_h).$
- $\blacksquare \left\{ \widetilde{e_i(s)} \right\} \to H^{1/2}(\partial \Omega_h).$
- $\bullet \left\{ e_i(\xi)e_j(\eta) \right\} \to L^2(\Omega_h).$

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		00000000	
Discretization			

Hybrid mixed formulation

 $\textit{Given } f \in L^2(\Omega) \textit{ and } \hat{\varphi} = \textit{tr}_{\textit{grad}} \textit{ } \varphi \in H^{1/2}(\partial \Omega), \textit{ find } (\textit{\textbf{u}}, \varphi, \check{\varphi}) \in H(\textit{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial \Omega_h \setminus \partial \Omega) \textit{ such that } f \in L^2(\Omega)$

 $\begin{cases} (\boldsymbol{u},\boldsymbol{v})_{L^{2}(\Omega)} + (\varphi,\operatorname{div}\boldsymbol{v})_{L^{2}(\Omega)} - (\check{\varphi},\operatorname{tr}_{\operatorname{div}}\boldsymbol{v})_{L^{2}(\partial\Omega_{h}\setminus\partial\Omega)} &= (\hat{\varphi},\operatorname{tr}_{\operatorname{div}}\boldsymbol{v})_{L^{2}(\partial\Omega)} \\ (\psi,\operatorname{div}\boldsymbol{u})_{L^{2}(\Omega)} &= -(\psi,f)_{L^{2}(\Omega)} &, \\ -(\check{\psi},\operatorname{tr}_{\operatorname{div}}\boldsymbol{u})_{L^{2}(\partial\Omega_{h}\setminus\partial\Omega)} &= 0 \end{cases}$

for all $(v, \psi, \check{\psi}) \in H(\operatorname{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial \Omega_h \setminus \partial \Omega)$.

Discrete hybrid mixed formulation :

$$\begin{pmatrix} \mathbb{M}^{(1)} & \mathbb{E}^{2,1^T} & -\mathbb{N}_I^T \\ \mathbb{E}^{2,1} & 0 & 0 \\ -\mathbb{N}_I & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{\phi} \\ \underline{\check{\phi}} \end{pmatrix} = \begin{pmatrix} \mathbb{N}_B^T \underline{\hat{\phi}} \\ -\underline{f} \\ 0 \end{pmatrix}.$$

- M⁽¹⁾ : metric-dependent; element-wise-block-diagonal;
- **E**^{2,1} : metric-independent; element-wise-block-diagonal; super sparse; ±1 non-zero entries;
- N : metric-independent; even more sparse; ±1 non-zero entries;

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		00000000	
Discretization			

Hybrid mixed formulation

 $\textit{Given } f \in L^2(\Omega) \textit{ and } \hat{\varphi} = \textit{tr}_{\textit{grad}} \textit{ } \varphi \in H^{1/2}(\partial \Omega), \textit{ find } (\textit{\textbf{u}}, \varphi, \check{\varphi}) \in H(\textit{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial \Omega_h \setminus \partial \Omega) \textit{ such that } H^{1/2}(\partial \Omega_h \setminus \partial \Omega) \text{ and } \hat{\varphi} = \textit{tr}_{\textit{grad}} \textit{ } \varphi \in H^{1/2}(\partial \Omega), \textit{ find } (\textit{\textbf{u}}, \varphi, \check{\varphi}) \in H(\textit{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial \Omega_h \setminus \partial \Omega) \textit{ such that } H^{1/2}(\partial \Omega_h \setminus \partial \Omega) \text{ and } \hat{\varphi} = \textit{tr}_{\textit{grad}} \textit{ } \varphi \in H^{1/2}(\partial \Omega), \textit{ find } (\textit{\textbf{u}}, \varphi, \check{\varphi}) \in H(\textit{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial \Omega_h \setminus \partial \Omega) \textit{ such that } H^{1/2}(\partial \Omega_h \setminus \partial \Omega) \text{ and } \hat{\varphi} = \textit{tr}_{\textit{grad}} \textit{ } \varphi \in H^{1/2}(\partial \Omega), \textit{ find } (\textit{\textbf{u}}, \varphi, \check{\varphi}) \in H(\textit{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial \Omega_h \setminus \partial \Omega) \textit{ such that } H^{1/2}(\partial \Omega_h \setminus \partial \Omega) \text{ and } \hat{\varphi} = \textit{tr}_{\textit{grad}} \textit{ } \varphi \in H^{1/2}(\partial \Omega), \textit{ find } (\textit{\textbf{u}}, \varphi, \check{\varphi}) \in H(\textit{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial \Omega_h \setminus \partial \Omega) \textit{ such that } H^{1/2}(\partial \Omega_h \setminus \partial \Omega) \text{ and } \varphi \in H^1(\mathcal{A}, \mathcal{A}) \text{ } \varphi \in H^1(\mathcal$

 $\begin{cases} (\boldsymbol{u},\boldsymbol{v})_{L^{2}(\Omega)} + (\varphi,\operatorname{div}\boldsymbol{v})_{L^{2}(\Omega)} - (\check{\varphi},\operatorname{tr}_{\operatorname{div}}\boldsymbol{v})_{L^{2}(\partial\Omega_{h}\setminus\partial\Omega)} &= (\hat{\varphi},\operatorname{tr}_{\operatorname{div}}\boldsymbol{v})_{L^{2}(\partial\Omega)} \\ (\psi,\operatorname{div}\boldsymbol{u})_{L^{2}(\Omega)} &= -(\psi,f)_{L^{2}(\Omega)} &, \\ -(\check{\psi},\operatorname{tr}_{\operatorname{div}}\boldsymbol{u})_{L^{2}(\partial\Omega_{h}\setminus\partial\Omega)} &= 0 \end{cases}$

for all $(v, \psi, \check{\psi}) \in H(\operatorname{div}, \Omega_h) \times H^1(\Omega_h) \times H^{1/2}(\partial \Omega_h \setminus \partial \Omega)$.

Discrete hybrid mixed formulation :

$$\begin{pmatrix} \mathbb{M}^{(1)} & \mathbb{E}^{2,1^T} & -\mathbb{N}_I^T \\ \mathbb{E}^{2,1} & 0 & 0 \\ -\mathbb{N}_I & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{\phi} \\ \underline{\check{\phi}} \end{pmatrix} = \begin{pmatrix} \mathbb{N}_B^T \underline{\hat{\phi}} \\ -\underline{f} \\ 0 \end{pmatrix}.$$

- **M**⁽¹⁾ : **metric-dependent**; element-wise-block-diagonal;
- **E**^{2,1} : metric-independent; element-wise-block-diagonal; super sparse; ±1 non-zero entries;
- N : metric-independent; even more sparse; ±1 non-zero entries;

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		00000000	
Discretization			

Discrete hybrid mixed formulation :

- $\begin{pmatrix} \mathbb{M}^{(1)} & \mathbb{E}^{2,1^T} & -\mathbb{N}_I^T \\ \mathbb{E}^{2,1} & 0 & 0 \\ -\mathbb{N}_I & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{\varphi} \\ \underline{\check{\phi}} \end{pmatrix} = \begin{pmatrix} \mathbb{N}_B^T \underline{\hat{\phi}} \\ -\underline{f} \\ 0 \end{pmatrix}.$
- **M**⁽¹⁾ : metric-dependent; element-wise-block-diagonal;
- **E**^{2,1} : metric-independent; element-wise-block-diagonal; super sparse; ±1 non-zero entries;
- **N** : metric-independent; even more sparse; ±1 non-zero entries;

We can easily eliminate \underline{u} and φ and obtain a system for the discrete interface variable $\check{\varphi}$,

where

$$\mathbf{H} = -\mathbf{N}_{l}\mathbf{M}^{(1)^{-1}} \left[\mathbf{M}^{(1)} - \mathbf{E}^{2,1T} \left(\mathbf{E}^{2,1}\mathbf{M}^{(1)^{-1}}\mathbf{E}^{2,1T}\right)^{-1}\mathbf{E}^{2,1}\right] \mathbf{M}^{(1)^{-1}}\mathbf{N}_{l}^{T},$$

$$\mathbf{F} = \mathbf{F}_{\phi} + \mathbf{F}_{f},$$

$$\mathbf{F}_{\phi} = \mathbf{N}_{l}\mathbf{M}^{(1)^{-1}} \left[\mathbf{M}^{(1)} - \mathbf{E}^{2,1T} \left(\mathbf{E}^{2,1}\mathbf{M}^{(1)^{-1}}\mathbf{E}^{2,1T}\right)^{-1}\mathbf{E}^{2,1}\right] \mathbf{M}^{(1)^{-1}}\mathbf{N}_{E}^{T}\underline{\phi},$$

$$\mathbf{F}_{f} = -\mathbf{N}_{l}\mathbf{M}^{(1)^{-1}}\mathbf{E}^{2,1T} \left(\mathbf{E}^{2,1}\mathbf{M}^{(1)^{-1}}\mathbf{E}^{2,1T}\right)^{-1}\underline{f}.$$

Inverting $\mathbb{M}^{(1)}$ and $\mathbb{E}^{2,1}\mathbb{M}^{(1)^{-1}}\mathbb{E}^{2,1^T}$ is easy (in parallel) because they are element-wise-block-diagonal. Solving for $\check{\phi}$ is cheap (smaller system size and condition number).

Remaining local problems for <u>u</u> and $\underline{\varphi}$ are trivial because $(\mathbb{E}^{2,1}\mathbb{M}^{(1)^{-1}}\mathbb{E}^{2,1^T})^{-1}$ is already computed

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
		00000000	
Discretization			

Discrete hybrid mixed formulation :

- $\begin{pmatrix} \mathbb{M}^{(1)} & \mathbb{E}^{2,1^T} & -\mathbb{N}_I^T \\ \mathbb{E}^{2,1} & 0 & 0 \\ -\mathbb{N}_I & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{\varphi} \\ \underline{\check{\phi}} \end{pmatrix} = \begin{pmatrix} \mathbb{N}_B^T \underline{\hat{\phi}} \\ -\underline{f} \\ 0 \end{pmatrix}.$
- **M**⁽¹⁾ : metric-dependent; element-wise-block-diagonal;
- **E**^{2,1} : metric-independent; element-wise-block-diagonal; super sparse; ±1 non-zero entries;
- **N** : metric-independent; even more sparse; ±1 non-zero entries;

We can easily eliminate \underline{u} and φ and obtain a system for the discrete interface variable $\check{\varphi}$,

where

$$\mathbf{F}_{1} \underline{\phi} = \mathbf{F},$$

$$\mathbf{H} = -\mathbf{N}_{I} \mathbf{M}^{(1)-1} \left[\mathbf{M}^{(1)} - \mathbf{E}^{2,1^{T}} \left(\mathbf{E}^{2,1} \mathbf{M}^{(1)^{-1}} \mathbf{E}^{2,1^{T}} \right)^{-1} \mathbf{E}^{2,1} \right] \mathbf{M}^{(1)^{-1}} \mathbf{N}_{I}^{T},$$

$$\mathbf{F} = \mathbf{F}_{\phi} + \mathbf{F}_{f},$$

$$\mathbf{F}_{\phi} = \mathbf{N}_{I} \mathbf{M}^{(1)-1} \left[\mathbf{M}^{(1)} - \mathbf{E}^{2,1^{T}} \left(\mathbf{E}^{2,1} \mathbf{M}^{(1)^{-1}} \mathbf{E}^{2,1^{T}} \right)^{-1} \mathbf{E}^{2,1} \right] \mathbf{M}^{(1)^{-1}} \mathbf{N}_{B}^{T} \underline{\phi},$$

$$\mathbf{F}_{f} = -\mathbf{N}_{I} \mathbf{M}^{(1)^{-1}} \mathbf{E}^{2,1^{T}} \left(\mathbf{E}^{2,1} \mathbf{M}^{(1)^{-1}} \mathbf{E}^{2,1^{T}} \right)^{-1} \underline{f}.$$

тт ч

Inverting $\mathbb{M}^{(1)}$ and $\mathbb{E}^{2,1}\mathbb{M}^{(1)^{-1}}\mathbb{E}^{2,1}^{T}$ is easy (in parallel) because they are element-wise-block-diagonal. Solving for $\check{\phi}$ is cheap (smaller system size and condition number).

Remaining local problems for <u>u</u> and φ are trivial because $(\mathbb{E}^{2,1}\mathbb{M}^{(1)^{-1}}\mathbb{E}^{2,1^T})^{-1}$ is already computed

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
		00000000	
Discretization			

Discrete hybrid mixed formulation :

- $\begin{pmatrix} \mathbb{M}^{(1)} & \mathbb{E}^{2,1^T} & -\mathbb{N}_I^T \\ \mathbb{E}^{2,1} & 0 & 0 \\ -\mathbb{N}_I & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{\boldsymbol{u}} \\ \underline{\boldsymbol{\varphi}} \\ \underline{\check{\boldsymbol{\varphi}}} \end{pmatrix} = \begin{pmatrix} \mathbb{N}_B^T \underline{\hat{\boldsymbol{\varphi}}} \\ -\underline{f} \\ 0 \end{pmatrix}.$
- **M**⁽¹⁾ : metric-dependent; element-wise-block-diagonal;
- **E**^{2,1} : metric-independent; element-wise-block-diagonal; super sparse; ±1 non-zero entries;
- **N** : metric-independent; even more sparse; ±1 non-zero entries;

We can easily eliminate \underline{u} and φ and obtain a system for the discrete interface variable $\check{\varphi}$,

where

$$\mathbf{H} \underline{\Psi} = \mathbf{H},$$

$$\mathbf{H} = -\mathbb{N}_{I} \mathbb{M}^{(1)^{-1}} \left[\mathbb{M}^{(1)} - \mathbb{E}^{2,1^{T}} \left(\mathbb{E}^{2,1} \mathbb{M}^{(1)^{-1}} \mathbb{E}^{2,1^{T}} \right)^{-1} \mathbb{E}^{2,1} \right] \mathbb{M}^{(1)^{-1}} \mathbb{N}_{I}^{T},$$

$$\mathbf{F} = \mathbb{N}_{q} + \mathbb{F}_{f},$$

$$\mathbf{F}_{\phi} = \mathbb{N}_{I} \mathbb{M}^{(1)^{-1}} \left[\mathbb{M}^{(1)} - \mathbb{E}^{2,1^{T}} \left(\mathbb{E}^{2,1} \mathbb{M}^{(1)^{-1}} \mathbb{E}^{2,1^{T}} \right)^{-1} \mathbb{E}^{2,1} \right] \mathbb{M}^{(1)^{-1}} \mathbb{N}_{B}^{T} \underline{\phi},$$

$$\mathbf{F}_{f} = -\mathbb{N}_{I} \mathbb{M}^{(1)^{-1}} \mathbb{E}^{2,1^{T}} \left(\mathbb{E}^{2,1} \mathbb{M}^{(1)^{-1}} \mathbb{E}^{2,1^{T}} \right)^{-1} \underline{f}.$$

HĂ — F

Inverting M⁽¹⁾ and E^{2,1}M⁽¹⁾⁻¹E^{2,1T} is easy (in parallel) because they are element-wise-block-diagonal.
 Solving for φ is cheap (smaller system size and condition number).

Remaining local problems for \underline{u} and $\underline{\phi}$ are trivial because $(\mathbb{E}^{2,1}\mathbb{M}^{(1)^{-1}}\mathbb{E}^{2,1^T})^{-1}$ is already computed.

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		0000000	
Discretization			

Discrete hybrid mixed formulation :

$$\begin{pmatrix} \mathbb{M}^{(1)} & \mathbb{E}^{2,1^T} & -\mathbb{N}_I^T \\ \mathbb{E}^{2,1} & 0 & 0 \\ -\mathbb{N}_I & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{\varphi} \\ \underline{\check{\phi}} \end{pmatrix} = \begin{pmatrix} \mathbb{N}_B^T \underline{\hat{\phi}} \\ -\underline{f} \\ 0 \end{pmatrix}$$

- **M**⁽¹⁾ : metric-dependent; element-wise-block-diagonal;
- **E**^{2,1} : metric-independent; element-wise-block-diagonal; super sparse; ±1 non-zero entries;
- **N** : metric-independent; even more sparse; ±1 non-zero entries;

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
		0000000	
Discretization			

Discrete hybrid mixed formulation :

- $\begin{pmatrix} \mathbb{M}^{(1)} & \mathbb{E}^{2,1^T} & -\mathbb{N}_I^T \\ \mathbb{E}^{2,1} & 0 & 0 \\ -\mathbb{N}_I & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{\boldsymbol{u}} \\ \underline{\boldsymbol{\varphi}} \\ \underline{\boldsymbol{\phi}} \end{pmatrix} = \begin{pmatrix} \mathbb{N}_B^T \underline{\boldsymbol{\hat{\varphi}}} \\ -\underline{\boldsymbol{f}} \\ 0 \end{pmatrix}.$
- **M**⁽¹⁾ : metric-dependent; element-wise-block-diagonal;
- **E**^{2,1} : metric-independent; element-wise-block-diagonal; super sparse; ±1 non-zero entries;
- **N** : metric-independent; even more sparse; ±1 non-zero entries;

We can easily eliminate \underline{u} and φ and obtain a system for the discrete interface variable $\check{\varphi}$,

where

$$\mathbf{H} = -\mathbf{N}_{I} \mathbf{M}^{(1)^{-1}} \left[\mathbf{M}^{(1)} - \mathbf{E}^{2,1T} \left(\mathbf{E}^{2,1} \mathbf{M}^{(1)^{-1}} \mathbf{E}^{2,1T} \right)^{-1} \mathbf{E}^{2,1} \right] \mathbf{M}^{(1)^{-1}} \mathbf{N}_{I}^{T},$$

$$\mathbf{F} = \mathbf{F}_{\phi} + \mathbf{F}_{f},$$

$$\mathbf{F}_{\phi} = \mathbf{N}_{I} \mathbf{M}^{(1)^{-1}} \left[\mathbf{M}^{(1)} - \mathbf{E}^{2,1T} \left(\mathbf{E}^{2,1} \mathbf{M}^{(1)^{-1}} \mathbf{E}^{2,1T} \right)^{-1} \mathbf{E}^{2,1} \right] \mathbf{M}^{(1)^{-1}} \mathbf{N}_{B}^{T} \underline{\phi},$$

$$\mathbf{F}_{f} = -\mathbf{N}_{I} \mathbf{M}^{(1)^{-1}} \mathbf{E}^{2,1T} \left(\mathbf{E}^{2,1} \mathbf{M}^{(1)^{-1}} \mathbf{E}^{2,1T} \right)^{-1} \underline{f}.$$

HĂ — F

Inverting M⁽¹⁾ and E^{2,1}M⁽¹⁾⁻¹E^{2,1T} is easy (in parallel) because they are element-wise-block-diagonal.
 Solving for φ is cheap (smaller system size and condition number).

Remaining local problems for \underline{u} and $\underline{\phi}$ are trivial because $(\mathbb{E}^{2,1}\mathbb{M}^{(1)^{-1}}\mathbb{E}^{2,1^T})^{-1}$ is already computed.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
			0000
Numerical results			

Manufactured solution

Given a domain $\Omega = [0, 1]^2$ and an exact solution $\varphi_{\text{exact}} = \cos(3\pi x e^y)$, we solve the Poisson problem with

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
			0000
Numerical results			

Manufactured solution

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
			0000
Numerical results			

Potential flow in a domain with spline interpolation boundaries

- Upper, lower and inner boundaries : Cubic splines interpolated free-slip walls.
- Left and right boundaries : Inlet and outlet of potential difference $\Delta \varphi = 10$.

Boundary	Sequence of samples.
Lower	$\begin{array}{l} (0,0), \ (0.11,0.01), \ (0.20,0.12), \ (0.61,-0.05), \ (0.69,0.16), \\ (0.82,0), \ (0.91,0.15), \ (1.01,-0.05), \ (1.21,-0.15), \ (1.30,0.13), \\ (1.48,0.22), \ (1.65,-0.05), \ (1.85,0.02), \ (2,0.15), \ (2.11,-0.03), \\ (2.36,0.31), \ (2.50,0.13), \ (2.71,0.12), \ (2.91,0), \ (3,0). \end{array}$
Upper	$\begin{array}{l} (0,1.5), (0.09,1.51), (0.17,1.32), (0.43,1.45), (0.58,1.36), \\ (0.83,1.50), (0.93,1.75), (1.14,1.52), (1.18,1.45), (1.33,1.33), \\ (1.4,1.64), (1.59,1.45), (1.88,1.37), (1.92,1.47), (2.15,1.63), \\ (2.40,1.71), (2.51,1.43), (2.72,1.42), (2.89,1.5), (3,1.5). \end{array}$
Inner	(1,0.5), (1.11,0.35), (1.32,0.55), (1.62,0.66), (1.85,0.45), (1.98,0.5), (2.1,0.55), (1.95,0.75), (1.9,0.99), (1.79,1.05), (1.6,0.88), (1.33,1.09), (0.95,1), (0.93,0.95), (1.09,0.76), (0.89,0.65), (1,0.5).

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
			0000
Numerical results			

Potential flow in a domain with spline interpolation boundaries

TABLE – Fluxes through the domain.

Ν	Number of elements				
	16	64	256	576	1024
2	2.49949	2.92468	2.95905	3.01901	3.02207
4	2.95266	3.03115	3.02979	3.03123	3.03129
6	3.04810	3.02942	3.03120	3.03139	3.03139
8	3.01246	3.03047	3.03137	3.03140	3.03141
10	3.02062	3.03108	3.03141	3.03141	3.03141
12	3.03175	3.03137	3.03141	3.03141	3.03141
14	3.03045	3.03142	3.03141	3.03141	3.03141

- Upper, lower and inner boundaries : Cubic splines interpolated free-slip walls.
- Left and right boundaries : Inlet and outlet of potential difference $\Delta \varphi = 10$.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
			0000
Conclusions			

We have proposed a high order spectral element method using dual polynomials :

- The method is hybrid; it is very much parallelizable.
- The method is mimetic; the divergence operator is preserved at the discrete level.
- Only one block is metric-dependent. Remaining blocks are metric-free, extremely sparse and finite-difference(volume)-like (containing non-zero entries of -1 and 1 only).
- It can be efficiently solved by solving a reduced system for the interface variable.

These features make the method a preferable one, especially for complex computational domains.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
			0000
Conclusions			

We have proposed a high order spectral element method using dual polynomials :

The method is hybrid; it is very much parallelizable.

The method is mimetic; the divergence operator is preserved at the discrete level.

- Only one block is metric-dependent. Remaining blocks are metric-free, extremely sparse and finite-difference(volume)-like (containing non-zero entries of -1 and 1 only).
- It can be efficiently solved by solving a reduced system for the interface variable.

These features make the method a preferable one, especially for complex computational domains.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
			0000
Conclusions			

We have proposed a high order spectral element method using dual polynomials :

- The method is hybrid; it is very much parallelizable.
- The method is mimetic; the divergence operator is preserved at the discrete level.
- Only one block is metric-dependent. Remaining blocks are metric-free, extremely sparse and finite-difference(volume)-like (containing non-zero entries of -1 and 1 only).
- It can be efficiently solved by solving a reduced system for the interface variable.

These features make the method a preferable one, especially for complex computational domains.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
			0000
Conclusions			

We have proposed a high order spectral element method using dual polynomials :

- The method is hybrid; it is very much parallelizable.
- The method is mimetic; the divergence operator is preserved at the discrete level.
- Only one block is metric-dependent. Remaining blocks are metric-free, extremely sparse and finite-difference(volume)-like (containing non-zero entries of -1 and 1 only).
- It can be efficiently solved by solving a reduced system for the interface variable.

These features make the method a preferable one, especially for complex computational domains.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
			0000
Conclusions			

We have proposed a high order spectral element method using dual polynomials :

- The method is hybrid; it is very much parallelizable.
- The method is mimetic; the divergence operator is preserved at the discrete level.
- Only one block is metric-dependent. Remaining blocks are metric-free, extremely sparse and finite-difference(volume)-like (containing non-zero entries of -1 and 1 only).
- It can be efficiently solved by solving a reduced system for the interface variable.

These features make the method a preferable one, especially for complex computational domains.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
			0000
Conclusions			

We have proposed a high order spectral element method using dual polynomials :

- The method is hybrid; it is very much parallelizable.
- The method is mimetic; the divergence operator is preserved at the discrete level.
- Only one block is metric-dependent. Remaining blocks are metric-free, extremely sparse and finite-difference(volume)-like (containing non-zero entries of -1 and 1 only).
- It can be efficiently solved by solving a reduced system for the interface variable.

These features make the method a preferable one, especially for complex computational domains.