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Mimetic, dual and hybrid
[ Jele}

Mimetic

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their finite dimensional function spaces preserve
the so-called De Rham complex :

d iv
R —H' ®5 H(curl) 2 Hdiv) %W 1250,
4 4 4 4
RH 2 Hycul) 9 Hydiv) W 2o

Therefore, mimetic methods are also called structure-preserving methods.
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[ Jele}

Mimetic

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their finite dimensional function spaces preserve
the so-called De Rham complex :

RoH # Hewl) 9 Hdv) W 120,
4 { { {
grad url div

R —H} =  Hy(curl) & Hy(div) & 120
Therefore, mimetic methods are also called structure-preserving methods.

Mimetic Spectral Element Method 123 is a high order mimetic mixed finite element method using the mathe-
matical language of differential geometry and algebraic topology.

1. Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.

2. Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics,
(2013) 240 : 284-309.

3. Palha, A., Rebelo, PP.,, Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to
the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.
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dual and hybrid

Duality structure is very common in physics.

m Fluid : pressure p and source term f, div u.

m Elasticity : displacement u and body force f, div ¢.
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Duality structure is very common in physics.

m Fluid : pressure p and source term f, div u.

m Elasticity : displacement 1 and body force f, div ¢.
In differential geometry, this duality structure is more clear, and is usually characterized by (inner- or outer-)

orientations.
4 - P / o
-— . - -—
“

A A

[. [', | ‘[1

9

e AO(sy

= g

x
—

Yi Zhang Delft University of Technology 2018, London,



Mimetic, dual and hybrid

[e] e}

Dual

Duality structure is very common in physics.

m Fluid : pressure p and source term f, div u.

m Elasticity : displacement u and body force f, div ¢.

In differential geometry, this duality structure is more clear, and is usually characterized by (inner- or outer-)
orientations.

The operator duality pairing between vectors from two dual spaces is well-defined and independent of metric.
We would like to preserve this duality structure.
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Mimetic, dual and hybrid

[e]e] ]

Hybrid

Hybrid (finite element) methods are those methods that relax the continuity across the inter-element interface by
introducing a Lagrange multiplier between elements.
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Mimetic, dual and hybrid

[e]e] ]

Hybrid

Hybrid (finite element) methods are those methods that relax the continuity across the inter-element interface by
introducing a Lagrange multiplier between elements.

4

Lagrange multiplier
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Mimetic, dual and hybrid

[e]e] ]

Hybrid

Hybrid (finite element) methods are those methods that relax the continuity across the inter-element interface by
introducing a Lagrange multiplier between elements.

4

Lagrange multiplier

For more information about hybrid methods, we refer to Pian 4 Raviart and Thomas5, Brezzi and Fortin .

4. Pian, T.H. Derivation of element stiffness matrices by assumed stress distributions. AIAA journal, (1964) 2(7), 1333-1336.
5. Raviart, P.A. and Thomas, J.M. Primal hybrid finite element methods for 2nd order elliptic equations. Mathematics of computation, (1977) 31(138), 391-413.
6. Brezzi, F. and Fortin M. Mixed and hybrid finite element methods. Springer-Verlag, 1991.
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With spectral elements
[ TeYole}
Mimetic basis functions

Mimetic basis functions

Let =1 = ¢y < {1 < --- < {N = 1 be a partitioning of the interval [—1,1]. The associated Lagrange polynomials :

hi(¢), ¢e[-1,1],i=0,1,---,N, satisfying hi(éj) =i (Kronecker delta).
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Mimetic basis functions

Mimetic basis functions

Let =1 = ¢y < {1 < --- < {N = 1 be a partitioning of the interval [—1,1]. The associated Lagrange polynomials :
hi(¢), ¢ € [-1,1], i=0,1,--- N, satisfying h;(¢;) = 4;; (Kronecker delta).
The corresponding edge polynomials 7 are

2 dhk

l:
Zdhk ,i=1,2,--- N, satisfying /g’ ei(§) = dij.
j—1

7. Gerritsma, M. Edge functions for spectral element methods. Spectral and High Order Methods for Partial Differential Equations. Springer, (2011) 199-207
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With spectral elements
[ TeYole}
Mimetic basis functions

Mimetic basis functions

Let =1 = ¢y < {1 < --- < {N = 1 be a partitioning of the interval [—1,1]. The associated Lagrange polynomials :

hi(¢), ¢e[-1,1],i=0,1,---,N, satisfying hi(éj) =i (Kronecker delta).

The corresponding edge polynomials 7 are

=2 dig( dhy( &
. . ] o
2 k 2 k ,N, satlsfymg/ (&) = Jjj.
k=0 &j-1
Lagrange polynomials 6 edge polynomials
)
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7. Gerritsma, M. Edge functions for spectral element methods. Spectral and High Order Methods for Partial Differential Equations. Springer, (2011) 199-207
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Mimetic basis functions

Mimetic basis functions

Let =1 = ¢y < {1 < --- < {N = 1 be a partitioning of the interval [—1,1]. The associated Lagrange polynomials :
hi(¢), ¢ € [-1,1], i=0,1,--- N, satisfying h;(¢;) = 4;; (Kronecker delta).
The corresponding edge polynomials 7 are

2 dhk

l:;"
Zdhk ,i=1,2,---,N, satisfying /gj &(8) = dij.
-1

Finite dimensional spaces spanned by {/;(¢)ej(17),¢;(§)hj(17)} and {e;(¢)e;(n7)} satisfy the De Rham complex. Let
u, f be expanded as

N N
uy = <Z Zulj ’ Z Zvl,jel ) and fh = Z Zfi/jei(g)e](ﬂ)
i=0j=1 i=1j=0 i=1j=1
If f = div u, then f;, = div u;, and
N N N N

Z Zf, ei(¢)ei (1) Z Z Wij— Ui 1j+ 0 — 0 1) ei(¢)ej(n) = div w,.

i=1j=1 i=1j=1

7. Gerritsma, M. Edge functions for spectral element methods. Spectral and High Order Methods for Partial Differential Equations. Springer, (2011) 199-207
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Mimetic basis functions

Discrete divergence operator
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FIGURE — Reference domain.
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With spectral elements
[eX Yole}
Mimetic basis functions

Discrete divergence operator

fh*

f f f If f = div u, then f;, = div u, :
v19 U20 V21 N N N N
L R NP > Zf:/ i Z Z wij— i1+ 0 — vij_1) ei(8)e;(17)-

i=1j=1 =1j=1

\ ? \ Collect all equations and write them in vector form, we have
uy . U U . Uy
4 f1 fa e f3 Ao o IEZ'I
A A A f=E"u
Ir I/*H v I
13 15 -1 1 0 0 0 0 000 0 00 -1 0 0 1 0 0 0 0 0 000
0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 -1 1 0 0 0 0 0 0 0o 0 o 0 -1 0 0 1 0 0 0 00 0
0 0 (U] 1 1 0 0 0 0 0o 0 o0 0 0 1 0 0 1 0 0 00 0
n H E>! 0 0 0o o -1 1 0 0 0 (U] 0 0 0 -1 0 0 1 0 00 0
FICURh Reference domaln' 0 0 0o 0 o 0 -1 1 0 0 0o 0 o 0 0 0 0 -1 0 0 1 00 0
0 0 0 0 0 0 0 [ 1 0 0 0 0 0 0 0 0 -1 0 0 100
0 0 0o 0 o 0 0 0 0 -1 1 0o o 0 0 0 0 0 0 -1 0 01 0
0 0 0o 0 o0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 10 0 1

E>! is the discrete div operator.
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With spectral elements

[e]e] e}

Mimetic basis functions

Discrete divergence operator

N N
w, = ZZ“ ai (&), 2 )i bii(E) |

A 170] 1 i=1j=0
‘1'33 '*,-.“ "z\*
Inoam b, o= L3 e
9] Uro i= ]7
If f = div u, then f;, = div u, :
N N N N

P

i=1j=1 i=1j=1

Collect all equations and write them in vector form, we have

f/ _ IEZ’Iu/,

-1 1 0 0 0 0 000 0 00 -1 0 0 1 0 0 0 0 0 00

0 1 1 0o o 0 o0 0 0 o 0o 0 o 1 o 0 1 0 0 0 0 00

0 0 -11 0 0 000 0 000 0 -1 0 0 1 0 0 0 00

00 00 -1 1 000 0 000 0 0 -1 0 0 1 0 0 00

o e 5 E2! 00 00 -1 1 0 0 0 0 0 0 0 0 -1 0 0 1 0 00
F1GUure — Curvilinear domain. R
0 0 0o 0 o 0 o0 0 -1 1 0o 0 o 0 0 0 0 0 -1 0 0 10

00 000 0 00O -1 100 0 0 0 0 0 0 -1 0 01

00 000 0 000 0 -11 0 0 0 0 0 0 0 0 -100

E>! is the discrete div operator.
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With spectral elements

[e]e]e] ]
Mimetic basis functions

Discrete trace operator

The trace variable trg;,# can be discretized as

N

N N N
traivtty = ZZ)ISE;((:), vane;(g)/ le‘i’ve;(ﬂ), Zuzee:(r/)
i=1 i=1 i=1

i=1

Uy

ug &

P

Ficure — Curvilinear domain.
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Mimetic basis functions

Discrete trace operator

The trace variable trg;,# can be discretized as

N N N N
traivtty = szsg;(g)l vane;(g)/ le‘i’ve;(ﬂ), Zu?e;(q)
i=1 i=1 i=1 i=1

Uy

There is a linear operator, IN, such that
u’ir =N ll/r

where uf, = (—o$,0", —u¥,u$)T and

co
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FIGURE — Curvilinear domain.

IN is the discrete trace operator.
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Dual representations

Dual representations

Let scalar functions pj, and g, both be expanded in terms of basis functions {¢;(&)e;(77)},

(thqh)LZ(Q) = PTM(‘Z)%

where M(®) is the mass matrix.
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With spectral elements
o
Dual representations

Dual representations

Let scalar functions pj, and g, both be expanded in terms of basis functions {¢;(&)e;(77)},

(Phrqh)LZ(Q) = PTM(‘Z)%

where M(?) is the mass matrix. We can further define the dual basis functions® as

1

[e1@ern), -+ sen(@en(m)] = ler@en(n), -+ en(@en ()M

8. Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017)
arXiv :1712.09472.
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With spectral elements

Dual representations

Dual representations

Let scalar functions pj, and g, both be expanded in terms of basis functions {¢;(&)e;(77)},

(Phrqh)LZ(Q) = PTM(‘Z)%

where M(?) is the mass matrix. We can further define the dual basis functions® as
-1
=ler(©er(m), - ren(@en(n)]MP

dual Lagrange polynomials

[61(?)61/(77),-~~ ,eN(é‘/)\eg(n)] :

Lagrange polynomials

10 |
10

hi(€)

505

0.0 =K

0.5 1.0 -1.0 —0.5
3

-1.0 —0.5 0.0

8. Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017)

arXiv :1712.09472.
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With spectral elements
o
Dual representations

Dual representations

Let scalar functions pj, and g, both be expanded in terms of basis functions {¢;(&)e;(77)},
(Phrqh)LZ(Q) = PTM(‘Z)%
where M® is the mass matrix. We can further define the dual basis functions® as

[e1@ern), -+ sen(@en(m)] = ler@en(n), -+ en(@en ()M

6 edge polynomials dual edge polynomials
)
1.5
4 1.0 B
T 2 . T 05
0 0.0 -
_9 —0.5
-1.0 —0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0
¢ 1

8. Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017)
arXiv :1712.09472.
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Dual representations

Dual representations

Let scalar functions pj, and g, both be expanded in terms of basis functions {¢;(&)e;(77)},

(Phrqh)LZ(Q) = PTM(‘Z)%

where M(?) is the mass matrix. We can further define the dual basis functions® as

1

[e1@ern), -+ sen(@en(m)] = ler@en(n), -+ en(@en ()M
If we expand p in terms of the dual basis functions {ei (C/)\ej/(n) }, we can obtain

(Bu @) 112y x12(0) = P' 9, where p = M@p,

(P ) Loy <2 () = (RPw )iy xr2) = Prodidiz(q) -

8. Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017)
arXiv :1712.09472.
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Dual representations

Dual representations

Let scalar functions pj, and g, both be expanded in terms of basis functions {¢;(&)e;(77)},

(Phrqh)LZ(Q) = PTM(‘Z)%

where M(?) is the mass matrix. We can further define the dual basis functions® as

1

[e1@ern), -+ sen(@en(m)] = ler@en(n), -+ en(@en ()M
If we expand p in terms of the dual basis functions {ei (C/)\ej/(n) }, we can obtain

(Bu @) 112y x12(0) = P' 9, where p = M@p,

(P ) Loy <2 () = (RPw )iy xr2) = Prodidiz(q) -
Riesz Representation Theorem : For every it € V, there exists a unique u € V, such that
<ﬁ’v>\7><v = <Rulv>\7xv = (u,'ll)v,vv ev,

R :u €V — it € Vis called Riesz mapping.

8. Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017)
arXiv :1712.09472.
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With spectral elements
o
Dual representations

Dual representations

Let scalar functions pj, and g, both be expanded in terms of basis functions {¢;(&)e;(77)},

(thqh)LZ(Q) = PTM(‘Z)%

where M(?) is the mass matrix. We can further define the dual basis functions® as

1

[e1@ern), -+ sen(@en(m)] = ler@en(n), -+ en(@en ()M
If we expand p in terms of the dual basis functions {ei (C/)\ej/(n) }, we can obtain

(Bu @) 112y x12(0) = P' 9, where p = M@p,
(P )1y x12(0) = (RPw )iy <2y = P dn)iz(a) -
Furthermore, if g, = div v),, and vy, is expanded by basis functions {h;(&)e;(), ei(&)h;(y7) }, we have

(Phr div R) () 1200 = P EX 0.
The same idea can be applied to the trace basis functions.

8. Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017)
arXiv :1712.09472.
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Hybridization

Sobolev spaces

Given an open bounded domain Q C R with Lipschitz boundary dQ), let L?(Q)) be the space of square integrable
scalar-valued functions in ),

2(Q) = {47 ’((p,(p)LZ(Q) = /0 lp)?dO < +oo},

then,

And the trace spaces are defined as
HY2(30)) := trgoqH' (Q), H V2(3Q) := trg;, H(div, Q),

which form a pair of dual spaces.

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK MS25, 12 July 2018 1/41



With spectral elements
oe
Hybridization

Broken Sobolev spaces

Given an open bounded domain Q C R? with Lipschitz boundary dQ. A mesh, denoted by O, partitions Q) into
K disjoint open elements () with Lipschitz boundary o€},

O=U_1 0 N0 =0, 1<i#j<K

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK MS25, 12 July 2018 12/41



Hybridization

Broken Sobolev spaces

Given an open bounded domain Q C R? with Lipschitz boundary dQ. A mesh, denoted by O, partitions Q) into
K disjoint open elements () with Lipschitz boundary o€},

O=U_1 0 N0 =0, 1<i#j<K

We can break L?(Q)), H'(Q), H(div, Q) and obtain the so-called broken Sobolev spaces? :
{<peL )| ¢lo, € 2@} = HLZ ),
K
H(O = {gerL ‘q)\QkEH (@0} = TTH" (@),
k=1
K
H(div, Q") {u u\n € H(le,Qk)} [T H(div, ).
k=1

9. Carstensen, C., Demkowicz, L. and Gopalakrishnan, J. Breaking spaces and forms for the DPG method and applications including Maxwell equations.
Computers and Mathematics with Applications, (2016) 72(3) : 494-522.
Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK




Hybridization

Broken Sobolev spaces

Given an open bounded domain Q C R? with Lipschitz boundary dQ. A mesh, denoted by O, partitions Q) into
K disjoint open elements () with Lipschitz boundary o€},

O=U_1 0 N0 =0, 1<i#j<K
We can break L?(Q)), H'(Q), H(div, Q) and obtain the so-called broken Sobolev spaces? :

peL2(Q ‘(p\QEL Qk} HLZQk
9

K
€ 12(Q ‘q)\QkEH Qk} TTH (%),
k=1

H(div, ") ue H(div, Q).

)
=1
H(") = {
-l

:]w

u\Q € H(div, Qk)}
k

I
—_

Spaces for interface functions are then defined as
H'?20") =t 4H'(Q),  H ?(Q") := tf, H(div, Q),

which are a pair of dual spaces as well. trgrad, trll, | restrict ¢ € H(Q), u € H(div, Q) onto 9Q), = UK, a0y

9. Carstensen, C., Demkowicz, L. and Gopalakrishnan, J. Breaking spaces and forms for the DPG method and applications including Maxwell equations.
Computers and Mathematics with Applications, (2016) 72(3) : 494-522.
Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK MS25, 12 July 2018




Poisson problem

Poisson problem
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Poisson problem
®0
Hybrid mixed formulation

Mixed formulation

We consider the constrained minimization problem,

.1
ar min - (wu ,
ueLZ%Q) diva=—f 2 ()20

where f is given.

Yi Zhang Delft University of Technology



Poisson problem
®0
Hybrid mixed formulation

Mixed formulation

We consider the constrained minimization problem,

.1
ar min = (u,u ,
o8 a2 (i)

where f is given. By introducing a Lagrange multiplier ¢, we can rewrite this constrained minimization problem
into a saddle-point problem for (u, ¢) € H(div, Q) x [*(Q) :

R 1 . R
Llu, ¢:f,§) = 5 (w)2(q) + (@, div # +f)r2(0) 12(0) = (9 Waiv0) p2(90) x1-1/2(90) -

where ¢ = trgrq ¢ € HY2(3Q)) and f € [2(Q) is given.

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK MS25, 12 July 2018 14/4



Poisson problem
®0
Hybrid mixed formulation

Mixed formulation

We consider the constrained minimization problem,

.1
ar min = (u,u ,
ueLZ%Q) divu=—f 2 ( )LZ(Q)

where f is given. By introducing a Lagrange multiplier ¢, we can rewrite this constrained minimization problem
into a saddle-point problem for (u, ¢) € H(div, Q) x [*(Q) :
. 1 . .
Llu, ¢:f,§) = 5 (w)2(q) + (@, div # +f)r2(0) 12(0) = (9 Waiv0) p2(90) x1-1/2(90) -
where ¢ = trgrq ¢ € HY2(3Q)) and f € [2(Q) is given.

Variational analysis on this functional gives rise to the mixed formulation : Find (u, @) € H(div, Q) x [?(Q) such
that

7

{ (,0)12(0) + (@, dIV V)20 12(0) = (@ taivO)nrz (o) xH-172(000)
(W, div ) 120012 (00 == (W.f)ri)x2()
for all (v,9) € H(div, Q) x L2(QQ).

This is a weak mixed formulation of the Poisson equation.

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK MS25, 12 July 2018



Poisson problem
oe
Hybrid mixed formulation

Hybrid mixed formulation

If we set up a mesh O in Q, using broken spaces, L>(Q"), H(div, ") and H'(Q)"), and introducing a new
Lagrange multiplier ¢ in the interface space H'/?(9()"\9()), we can rewrite the functional as
P 1 .
L(u, 9, ¢if, ) = 5 (1) 12(qpy + (@, AV 1+ f) 1200y x12(ct)
= (@ traivtt) g2 (a0 90 < 172 (900 002) — (@0 Edivt) 1172 (900 x 172 (002 -

The interface variable ¢ serves as the Lagrange multiplier which enforces the continuity at the internal interface
00, \oQ).

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK MS25, 12 July 2018 15/41



Poisson problem
oe
Hybrid mixed formulation

Hybrid mixed formulation

If we set up a mesh O in Q, using broken spaces, L>(Q"), H(div, ") and H'(Q)"), and introducing a new
Lagrange multiplier ¢ in the interface space H'/?(9Q)"\9()), we can rewrite the functional as

A 1 .
L(u, 9, ¢if, ) = 5 (1) 12(qpy + (@, AV 1+ f) 1200y x12(ct)
= (@ traivtt) g2 (a0 90 < 172 (900 002) — (@0 Edivt) 1172 (900 x 172 (002 -

The interface variable ¢ serves as the Lagrange multiplier which enforces the continuity at the internal interface
00, \oQ).

From this new functional, we can obtain the hybrid mixed formulation for the Poisson problem written as : Given
fer2(Q") and ¢ = trgrad @ € HY2(9Q)), find (u, ¢, §) € H(div, ") x [2(Q") x H/2(dQ"\9Q) such that

(1,9) 2y + (@, iV V) p2 ey 12 (an) = (@ Taiv®) 12000 00) <1 12000 00) = (@ Mdiv®) 17290 xH-1/2(300)
(1, div u)zz(Qh)XLz(Qh) =- <¢/f>ZZ(Q")xL2(Qh) ,

- <¢/ trdivu>H\ /2(a0Y\9QY) x H-1/2 (20Y\902) =0

for all (v,, ) € H(div, Q") x [2(Q) x H/2(d0)"\9Q1). Tt is easy to prove that the interface variable ¢ represents
the restriction of ¢ onto 90"\dQ).

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK MS25, 12 July 2018




Poisson problem
@00
Discretization

Discretization

Given f € L>(Q") and ¢ = trgrad ¢ € HY2(0Q)), find (u, ¢, ¢) € H(div, Q") x [2(Q") x H/2(0Q"\9Q) such that

(,9) 120y + (@, diV ©) 12y 12 (o) — (P aiv®) /2 (a0 12 (00 a0) = (@s tdiv@) /2 (30) xH-1/2(000)
(W, div ) 2 oy 20w =~ @H @)@ /

—(¥ trdi\"’>H'/2(aQ/1 \0Q) x H-1/2(200"\902) =0

for all (v,1,§) € H(div, Q") x [2(Q") x H/2(a0"\aQ).

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK MS25, 12 July 2018 16/41



Discretization

Discretization

Given f € L>(Q") and ¢ = trgrad ¢ € HY2(0Q)), find (u, ¢, ¢) € H(div, Q") x [2(Q") x H/2(0Q"\9Q) such that

(u,'v)LZ(Qh) + (¢, div v>i2((zh)><L2(Q’l) — (@, trdivv>nl/Z(;mh\;m)xu 12(30M0Q) = <¢’/trdiV”>H“2(BO)XH*W(BQ)
(W, div ) 2 oy 20w =~ @H @)@ /
7<L/J, trdi\vll>H|/z(aQ/W\(‘)Q)XH—I/’Z(UQ/J\(‘)Q) =0

for all (v,1,§) € H(div, Q") x [2(Q") x H/2(a0"\aQ).

We choose finite dimensional spaces spanned by following basis functions for the discretization :
w {1i(8)ej (1), ei(E)hi (1) } — H(div, O).
= {ei(@)ei(m)} — L), {(@)ei(n) } — L2(O).
= {ei(s)} — HV2(00), {ei(s) } — HY2(00%).

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK MS25, 12 July 2018 16/41



Discretization

Discretization

Given f € L>(Q") and ¢ = trgrad ¢ € HY2(0Q)), find (u, ¢, ¢) € H(div, Q") x [2(Q") x H/2(0Q"\9Q) such that

(,9)12(qny + (@, div 77>£2(Q/1)><L2(Q’l) — (@ traw®) g2 oo xH-12(00M00) = <¢’/trdiV”>H“2(BO)XH*VZ(BQ)
(W, div ) 2 oy 20w =~ @H @)@ /
*<L/J, trdi\'”>H'/2(dQ/’ \0Q) xH-1/2(30¥\ Q) =1

for all (v,1,§) € H(div, Q") x [2(Q") x H/2(a0"\aQ).

Discrete hybrid mixed formulation :

MO ]Ez,lT 7]N}' u ]Ngg?
E21 0 0 9 -f |-
—IN; 0 0 @ 0

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK MS25, 12 July 2018 17/41




Poisson problem

(o] Je}
Discretization

Discretization

Given f € L>(Q") and ¢ = trgrad ¢ € HY2(0Q)), find (u, ¢, ¢) € H(div, Q") x [2(Q") x H/2(0Q"\9Q) such that
(u/v)LZ(Qh) + (¢, div "’>i2((zh)xL2(Qh) — (¢ trdivz’>111/2(;)(2h\;m>xu 12(30M0Q) = <¢/trdivv>H1/2(BQ)xH*l/Z(aQ)

(1, div u>E2(Qh)xL2(Qh) == <¢rf>12(0h)xL2(0h)

—(¥, trdi\'”>H'/2(Z)Q/’ \2Q) xH-1/2(20"\002) =0
for all (v,1,§) € H(div, Q") x [2(Q") x H/2(a0"\aQ).

Discrete hybrid mixed formulation : a MO . metric-dependent; element-wise-block-diagonal;

M® ]Ez,lT 7]N}‘ u ]Nggf) m E21: metric-independent; element-wise-block-diagonal ; super
E21 0 0 1) ,ff . sparse; =1 non-zero entries;
-N; 0 0 ¢ 0

m N : metric-independent; even more sparse; +1 non-zero
entries;

Yi Zhang Delft University of Technology

ICOSAHOM, 09-13 July 2018, London, UK

MS25, 12 July 2018



Poisson problem

ooe
Discretization

Discretization

Discrete hybrid mixed formulation : a MO metric-dependent; element-wise-block-diagonal ;

MO |27 ONT u N%¢ m E?! : metric-independent ; element-wise-block-diagonal ; super
E2! 0 0 I | = _f sparse; =1 non-zero entries;
-N; 0 0 ¢ 0

m N : metric-independent ; even more sparse; 1 non-zero
entries;

Yi Zhang Delft University of Technology

ICOSAHOM, 0¢




Poisson problem

ooe

Discretization

Discretization
Discrete hybrid mixed formulation : a MO metric-dependent; element-wise-block-diagonal ;
MO |27 ONT u N%¢ m E?! : metric-independent ; element-wise-block-diagonal ; super
E21 0 0 1 ol = _f* ) sparse; =1 non-zero entries;
—IN; 0 0 ? 0 m N : metric-independent ; even more sparse; 1 non-zero

entries;
We can easily eliminate # and ¢ and obtain a system for the discrete interface variable ¢,
H¢ =F,
where H=—NMD ! []M(l) _p2’ (]EZJMU)*‘]EMT)" ]Ez,l} MO NT,
IF =Ty +IFy,

— - -1 —
Fp = N ™ [M“h]EZJT (BmO g2 IEZJ} MO N,

Fr = —N;MO g2 (JEZ/1M<1>’1IE2'1T)71f.

Yi Zhang Delft University of Technology ICOSAHOM, 09-1:




Poisson problem

ooe
Discretization

Discretization

Discrete hybrid mixed formulation : a MO metric-dependent; element-wise-block-diagonal ;

MO |27 ONT u N%¢ m E?! : metric-independent ; element-wise-block-diagonal ; super
E2! 0 0 I | = _ff . sparse; =1 non-zero entries;
-N; 0 0 [ 0

m N : metric-independent ; even more sparse; 1 non-zero
entries;

We can easily eliminate # and ¢ and obtain a system for the discrete interface variable ¢,

Hg = F,
where H=—NMD ! []M(l) _p2’ (]EZJMU)*‘]EMT)" ]Ez,l} MO NT,
IF =Ty +IFy,

— - -1 —
Fp = N ™ [M“h]EZJT (BmO g2 IEZJ} MO N,

Fr = —N;MO g2 (JEZ/1M<1>’1IE2'1T)71f.

m Inverting M()) and E2IM R s easy (in parallel) because they are element-wise-block-diagonal.
m Solving for ¢ is cheap (smaller system size and condition number).

® Remaining local problems for # and ¢ are trivial because (E>'MM 711E2'1T)*] is already computed.

Yi Zhang Delft University of Technology

ICOSAHOM, 09-13 July 2018, London, UK
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Poisson problem
®00
Numerical results

Manufactured solution

Given a domain Q = [0, 1]2 and an exact solution @exact = cos(37txe?), we solve the Poisson problem with

fexact = —div grad Pexact in ),

@ = trgrad Pexact on oQ).
1.0 1.0
08 0.8
0.6 0.6
04 0.4
0.2 0.2
0.0 0.0
oo 0z 04 o6 o5 10 oo oz o4 os  os 10
1 1 . .
x=5+5 [€ + csin(7t¢) sin(7t77)]
1 1 . . '
y= 5+ 5+ csin(g) sin(ro)]

Yi Zhang Delft University of Technology ICOSAHOM, 0



Poisson problem

(o] Je]

Numerical results

Manufactured solution

102 10710
10! o
g1 */\t
10
N /&/.
" 1072
1077 E
= =00
10-10 101 . c=03
, ¢=0.0
VK =4, c=03 c=03
1071 1013 10-14
4 6 8 10 12 14 16 18 20 22 24 26 16 8 10 12 14 16 18 20 22 24 26 1 6 8 10 12 14 16 18 20 22 24 2
N N N
10!
10 5
107! —
: 1073 ! )
= —— N=2c¢=00 —— N=2c=00
10-3 —— N=2¢=03 10°% —— N=2
N=4,¢=00 N=4,
N=4,¢=03 a— N=4
r 10 107
10 102 10-! 1072 107! 102 10!
VK VK 1/VE

Yi Zhang Delft University of Technology



Poisson problem
coe
Numerical results

Potential flow in a domain with spline interpolation boundaries

1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

Boundary  Sequence of samples.

(0,0), (0.11,0.01), (0.20,0.12), (0.61, —0.05), (0.69,0.16),
(0.82,0), (0.91,0.15), (1.01, —0.05), (1.21, —0.15), (1.30,0.13),
(1.48,0.22), (1.65,—0.05), (1.85,0.02), (2,0.15), (2.11, —0.03),
(2.36,031), (2.50,0.13), (2.71,0.12), (2.91,0), (3,0).

(0,1.5), (0.09,1.51), (0.17,1.32), (0.43,1.45), (0.58,1.36),
(0.83,1.50), (0.93,1.75), (1.14,1.52), (1.18,1.45), (1.33,1.33),
(

(

(

(

(

m Upper, lower and inner boundaries : Cubic splines Lower
interpolated free-slip walls.

m Left and right boundaries : Inlet and outlet of

LG Upper 14,1.64), (1.59,1.45), (188,1.37), (1.92,147), (2.15,1.63),
potential difference Ag = 10. 240,1.71), (251,143), (2.72,1.42), (2.89,1.5), (3,1.5).
1,05), (1.11,0.35), (1.32,055), (1.62,0.66), (1.85,0.45), (1.98,05),
; 21,0.55), (195,0.75), (1.9,099), (1.79,1.05), (1.6,0.88), (1.33,1.09),
nner

0.95,1), (0.93,0.95), (1.09,0.76), (0.89,0.65), (1,0.5).

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK



Poisson problem

[e]e] ]

Numerical results

Potential flow in a domain with spline interpolation boundaries

1.0

0.54

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5

TasLE — Fluxes through the domain.

Number of elements
m Upper, lower and inner boundaries : Cubic splines 16 64 256 576 1024
interpolated free-slip walls. 249949 292468 295905 3.01901  3.02207

2
. . 4 295266 3.03115 3.02979 3.03123  3.03129
m Left and I‘lght boundaries : Inlet and outlet of 6 3.04810 3.02942 3.03120 3.03139  3.03139
potential difference Ag = 10.

z

8 3.01246  3.03047 3.03137 3.03140  3.03141
10 3.02062 3.03108 3.03141 3.03141  3.03141
12 3.03175 3.03137 3.03141 3.03141 3.03141
14 3.03045 3.03142 3.03141 3.03141 3.03141

Yi Zhang Delft University of Technology
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elasticity
0
Hybrid mixed formulation

Mixed formulation

Consider the Lagrange functional 1 for (¢ u,w) € H(div, Q) x LZ(Q) x L2(Q) :

Llgu wif i) = (€, C) 12 = (B av®) 12 30 11172 a0 <” div ‘7+f> (@ T) 2

o)x2(0)

where f € L2(Q) and &t = trgraq U € HY2(30)) are given.

10. Olesen, K., Gervan, B., Reddy, ].N. and Gerritsma, M. A higher-order equilibrium finite element method, Int ] Numer Methods Eng, (2018) 144 :1262-1290
Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK




Hybrid mixed formulation

Mixed formulation

Consider the Lagrange functional 1 for (¢, u, w) € H(div, Q) x LZ(Q) X

Llgwwif i) = (2 C) 12 — (& Taiv) 112 000y s 1/2(202) <” div ‘7+f> - (@ Tg)

()’

o)x2(0)

where f € L2(Q) and &t = trgraq U € HY2(30)) are given.

Variational analysis gives rise to following weak mixed formulation : Find (¢, u,w) € H(div, Q) x LZ(Q) x L2(Q)

such that
(Cglg)LZ(Q) (u, div 0>L 2()xL2(Q) — (0, TF )LZ(Q) = @,trdivg>ﬂl/z(amng/z(ao)
<E’divg>L2(Q)><LZ(Q) =*<Jf> 2(Q)xL2(Q) ’
— (@, TZ)U(Q) =0

for all (7,11, @) € H(div, Q) x L(Q) x L

10. Olesen, K., Gervan, B., Reddy, ].N. and Gerritsma, M. A higher-order equilibrium finite element method, Int ] Numer Methods Eng, (2018) 144 :1262-1290
Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK MS25, 12 July 2018




Hybrid mixed formulation

Mixed formulation

Consider the Lagrange functional 1 for (¢ u,w) € H(div, Q) x LZ(Q) X

Llgwwif i) = (2 C) 12 — (& Taiv) 112 000y s 1/2(202) <” div ‘7+f> - (@ Tg)

12(Q) 7

o)x2(0)

where f € L2(Q) and &t = trgraq U € HY2(30)) are given.

Variational analysis gives rise to following weak mixed formulation : Find (¢, u,w) € H(div, Q) x LZ(Q) x L2(Q)

such that
(Cglg)LZ(Q) (u, div 0>L 2()xL2(Q) — (0, TF )LZ(Q) = @,trdivg>ﬂl/z(amng/z(ao)
<E’divg>L2(Q)><LZ(Q) =*<Jf> 2(Q)xL2(Q) ’
— (@, TZ)U(Q) =0

for all (&1, @) € H(div, Q) x L*(Q) x L*(Q).

The solution of this weak formulation (the stationary point of the Lagrangian) solves the linear elasticity.

10. Olesen, K., Gervan, B., Reddy, ].N. and Gerritsma, M. A higher-order equilibrium finite element method, Int ] Numer Methods Eng, (2018) 144 :1262-1290
Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK MS25, 12 July 2018




Hybrid mixed formulation

Hybrid mixed formulation

If we set up a mesh O"in O, we get broken spaces :
g(di\’, Qh)/ Hl (Qh)’ LZ(Q/])-
Introduce a new Lagrange multiplier : & € H'/%(9()\9()), we have a new functional :

Lo ww if,0) = (g Cg)LZ(Qh) - <Q/frdivg>ﬂ1/z(agh)Xﬂ—l/z(anh)

— (@, trgiy@ u,div g +f (w, To)

>ﬂ”2(aoﬁ \0Q) xH /220 90)) + < ,>E2(Qh)xL2(Qh) N =12

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK MS25, 12 July 2018



Hybrid mixed formulation

Hybrid mixed formulation

If we set up a mesh O"in O, we get broken spaces :
g(di\’, le)/ Hl (Qh)’ LZ(Q/])-
Introduce a new Lagrange multiplier : & € H'/%(9()\9()), we have a new functional :

Lo ww if,0) = (g CV)Lz(Qh <Q/frdivg>ﬂ1/z(agh)Xﬂ—l/z(anh)

_ <u,trdi\.g>ﬂw,/g(a0/, \00) B2 (000 000) <u div a+f>L2 @z (g,Tg)Lz(Qh) ,

Hybrid mixed formulation : Given f € L2(Q") and &t = trgraq U € HY2(3Q0), find (o uw, i) € H(div, ary x
LX(OF) x L2(Q) x HY2(20Y"\0Q) such that

(€2 8) 2y + (W AV Oy g2y = (€ TE) 2oy = (L Erain®) 172 a0)xH 2 @0Ma0) T @tr‘“"@ﬂ”z(amxg’”z(m)
(it, div g>iz(ﬂ)’)xL2(Q”) - <J'f>Lz Q) xL2(Qh)
(w Tlf),_z(n/: =0

= (i traiv @) 12 oy 90) x H~1/2(900M000) =0

for all (&,11, &, 1) € H(div, Q) x L*(QF) x L*(Q) x H/2(00"\30Q0).

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK



Hybrid mixed formulation

Hybrid mixed formulation

If we set up a mesh O"in O, we get broken spaces :
g(di\’, le)/ Hl (Qh)’ LZ(Q/])-
Introduce a new Lagrange multiplier : & € H'/%(9()\9()), we have a new functional :

Lo ww if,0) = (g CV)Lz(Qh <Q/frdivg>ﬂ1/z(agh)Xﬂ—l/z(anh)

_ <u,trdi\.g>ﬂw,/g(a0/, \00) B2 (000 000) <u div a+f>L2 @z (g,Tg)Lz(Qh) ,

Hybrid mixed formulation : Given f € L2(Q") and &t = trgraq U € HY2(3Q0), find (o uw, i) € H(div, ary x
LX(OF) x L2(Q) x HY2(20Y"\0Q) such that

(CQQ)LZ ayt (u, div ‘7>L2(o")xL2(oh) (@ T”)Lz(o") - trd'\éf’g* 2(00Ma0)xH 2 (00Ma0) T <ﬁ4trdiVQE/Z(ao)xgl/z(am
(it, div g>E2(Q”)XL2(Q") = <J'f>LZ QM x12(Qh)
- (@ T‘T),_Z(m =0

= (i traiv @) 12 oy 90) xH-172(200\002) =0

for all (&,11, &, 1) € H(div, Q) x L*(QF) x L*(Q) x H/2(00"\30Q0).

It is easy to prove that the interface variable @ represents the displacement on 0€);,\9Q).

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK MS25, 12 July 2018



Linear elasticity

@®000000
Discretization

Discretization : Stress, body force and displacement

2 2 4
Ty Y Tay
o ¢
1 2 £ £y
T e e T |
o o
> > 4
1 3 1
Tpu Oow o

vy

Yi Zhang Delft University of Technology
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Discretization

Discretization : Stress, body force and displacement

2 2 4
Oy Jy Oy
2
3 o 3
Lo Lo 4 ?yy
1 © 2 Jx 3
O—ZL'.'L' xrxr U.LIL
ol 1 o3
zy y zy
, , 4
1 3 1
Oyx Oya Tyy

m For stress ¢, &; H(div, ()), we choose

o] [{m@e o} {eNemvan}
{viy Ui‘y}%[ {h{”(é)%)} {ef“(é)hj”“(n)}

Yi Zhang Delft University of Technology

ICOSAHOM, 09-13 July 2018, London, UK

MS25, 12 July 2018
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Linear elasticity
@®000000
Discretization

Discretization : Stress, body force and displacement

2 2 4
Oy Yy Oy
2
3 o 3
Lo 2 s ?yy
1 © 2 Jx 3
O—.LL xrxr U.LIL
ol 1 o3
zy y zy
. , :
1 3 1
Oyx Oya Tyy

m For stress ¢, &; H(div, ()), we choose

ol ol . {h,l'\Hl(C)e]I-\FI( )}
oy Ty i

m For body forcei; Lz(Qk), we choose

] = {eN@e o} {1 @eN i}

~z

Yi Zhang Delft University of Technology

ICOSAHOM, 09-13 July 2018, London, UK

MS25, 12 July 2018

25/41



Linear elasticity
@®000000
Discretization

Discretization : Stress, body force and displacement

2 2 4
Oy Jy Oy
2
3 o 3
Lo 2 s ?yy
1 © 2 Jx 3
O—.LL xrxr U.LIL
ol 1 o3
zy y zy
. , :
1 3 1
Oyx Oya Tyy

m For stress ¢, &; H(div, ()), we choose

o o] [ @ o)
Ty Oy i

m For body forcei; Lz(Qk), we choose
] = {eN@e o} {1 @eN i}
m For displacement u, i ; LZ(Qk), we choose

{uﬁ, uﬂ -

{d@d o} { T |

ICOSAHOM, 09-13 July 2018, London, UK

Yi Zhang Delft University of Technology

MS25, 12 July 2018
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Linear elasticity
00000
Discretization

Discretization : Rotation

1 4.3
’Dw 9(/.) Jwy KDw 9&.} O—Ly
1 3
UyL Uyz

m For rotation w, @; L?(Q) which reduces to a scalar w; L2(Q)) in R? , we choose
w = {W@ma}.

It enforces the symmetry of the stress tensor in each element.

Yi Zhang Delft University of Technology




Linear elasticity
[e] Jelele]ele}
Discretization

Discretization : Rotation

1 w w 3
Tul T
1 3
yT Ty

m For rotation w, @; L?(Q) which reduces to a scalar w; L2(Q)) in R? , we choose
w = {W@ma}.

It enforces the symmetry of the stress tensor in each element.

Yi Zhang Delft University of Technology ICOSAHOM, 0¢
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[e] Jelele]ele}
Discretization

Discretization : Rotation

1 w w 3
Tul T
1 3
yT Ty

m For rotation w, @; L?(Q) which reduces to a scalar w; L2(Q)) in R? , we choose
w = {W@ma}.

It enforces the symmetry of the stress tensor in each element.
m In multiple element case, the kinematic spurious modes are there. So we have to loose the symmetry
constraint by reduce the order of the polynomial by 1,

w = {WN @R )}

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK



Discretization

Linear elasticity
[e]e] JeJelele]
Discretization : Interface Lagrange multiplier
> > >
2 4 2 4
Oy Oya Oy Oya
»-—»1 —-»2 3 »-—»1 —-»2 3 >
Ozx 20 Oza Ozx Oz Oz m For the Lagrange multiplier &, i; ﬂl/ Z(E)Qk), we choose
1 3 1 3
o o o o P o
yx vz Yz yz - N N N-1 N-1
el 1 w— {S @@ e T
o2 o o2 ol ) )
yT yx yx yx corresponding to south, north, west and east boundaries
of each element.
>-—Pl - 9 3 ’P-—Dl —->2 ‘3—§>
UTT UTT O';L'(L' U’IJ.’IJ O—.’l)l‘ O.:L‘L
1 3 1 3
O—yz‘ Uyz Uy.z Uyz
> >

Yi Zhang Delft University of Technology

2018, London,




Linear elasticity

[e]e]e] Jelele}
Discretization

Discretization : Interface Lagrange multiplier

A A
+ +
3 3
o o
‘0’2 vy 0.4 . LO.Q vy 0,4 b 4
A Ty Ty |4 Ty Ty
2
N 2%y
1 1
) m For the Lagrange multiplier i, 1 ; ﬂl/ 2(3Q)), we choose
R st 3 4,41 3 44 k
Oy Oy Ty Ty
ol ol T T T
vy vy = -1 -1 N N
t t o - {d T d @A mam},
A 7y
IO_3 Io_3
l o EE Gl G vy o 4k corresponding to south, north, west and east boundaries
a0y OpyTal oy Ouyl 4
2 9 7 of each element.
2%y 2%y
b 1 3 4 41 3 4
ATy Oy [ 4 ]2y Oay|
ol ol
4%y 4%y
i i

Yi Zhang Delft University of Technology ICOSAHOM, 0¢




[e]e]e]le] Jele}

Discretization

Discretization

Given f € L*(Q)) and it = trgrq u € H'/2(3Q)), find (¢, u,w, &) € H(div, ") x L2(QM) x L2(Q) x HY2(30/M\00)

such that
(CZIZ)LZ(Q) + (w div Z>EZ(O)xL2(Q) - (@ TZ)LZ(O) (@ traivd) g2 oo A0)xH2(00M90) T @’trdi"Qﬂ”z(aﬂ)XE’”Z(am
(& div @) pa )12 () - <4f>L2 (Q)xI2(Q)
- (@ Tg)LZ(Q) =0
7<l—!l’trdi\g>ﬂ] 2(90\a0) xH /2 (20 aQ2) =0

for all (&,,@, 1) € H(div, Q") x I2(Q") x L2(Q") x H/2(30!\20).

Discrete hybrid mixed formulation is

MO BT T -NT] (e NZa
E?! 0 0 0 ul _| —f
-7 0 0 0 w 0
-N; 0 0 0 Z 0

MS25, 12 July 2018

ICOSAHOM, 09-13 July 2018, London, UK
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Linear elasticity
0000080
Discretization

Discretization

Discrete hybrid mixed formulation : u MO : element-wise-block-diagonal ; metric-dependent;

M@ ]E2,1T -T ,]N}” o Ngﬁ m T : element-wise-block-diagonal ; metric-dependent ;

E21 0 0 0 u | _ —f m E21 : element-wise block-diagonal ; metric-free; +1 non-zero
=TT 0 0 0 w 0 entries; super sparse;

—IN; 0 0 0 i 0

m N : metric-free; +1 non-zero entries; even more sparse;

Yi Zhang Delft University of Technology ICOSAHOM, 0¢



Linear elasticity
0000080
Discretization

Discretization

Discrete hybrid mixed formulation : a MO : element-wise-block-dia gonal ; metric-dependent ;

Nia\ = T : element-wise-block-diagonal ; metric-dependent;

M(l) ]EZ,lT -T *N}ﬂ o

E21 0 0 0 u| _ —f m E21 : element-wise block-diagonal ; metric-free; +1 non-zero
=TT 0 0 0 wl| ™ 0 entries; super sparse;

—IN; 0 0 0 i 0

m N : metric-free; +1 non-zero entries; even more sparse;
We can easily eliminate ¢, # and w, and obtain a system for the discrete interface variable i,
Hu =T,

where .
H = —N;M®D ™" [M“) _gT (SJM“VIST)i s] MO 'NT,
F=F;+F,

_ — -1 _
Fi = NM®D ! [JM(U —sT (sm 1ST) s} MO N,

— _ -1
Fy = —N;MO ST (M) TsT) g,

gT — []Ez,lT 711-], g=(—f" O)T.
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Discretization

Discrete hybrid mixed formulation : u MO : element-wise-block-diagonal ; metric-dependent;

Nia\ = T : element-wise-block-diagonal ; metric-dependent;

MO g2 1 _NT] (e

E21 0 0 0 u | _ —f m E21 : element-wise block-diagonal ; metric-free; +1 non-zero
=TT 0 0 0 w 0 entries; super sparse;

—IN; 0 0 0 n 0 m N : metric-free; +1 non-zero entries; even more sparse;

We can easily eliminate ¢, # and w, and obtain a system for the discrete interface variable i,

Hu =F,

m Inverting M()) and SM() “lsT s easy (in parallel) because they are element-wise-block-diagonal.

m Solving for # is cheap (smaller system size and condition number).

m Remaining local problems for ¢, u and w are trivial because (smM® 7IST)’1 is already computed.
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Numerical results

Manufactured solution

Given a domain Q = [0,1]%, E = 1, v = 0.3 and exact solutions :

u = [sin(27tx) cos(27ty), cos(7tx)sin(my)], w = —0.57sin(7x) sin(7ry) + 7 sin(27x) sin(27ty),
Oy = ﬁ [277 cos(27tx) cos(27ty) + vt cos(rtx) cos(mty)], oyx = % [—0.57t sin(7rx) sin(7ty) — 7w sin(27x) sin(27ty)],
Ty =135 [—0.57sin(7x) sin(rry) — 7 sin(271x) sin(27y)], oy = (15702) [27tv cos(27x) cos(27ty) + 7 cos(7tx) cos(mty)],
fr= ﬁ [74712 sin(27x) cos(27ty) — v7r? sin(7rx) cos(rry)} + % [70.5712 sin(7tx) cos(my) — 272 sin(277x) cos(27ry)] ,
fy= Hiv {70.57‘[2 cos(7tx) sin(7y) — 272 cos(27tx) sin(Zny)} + ﬁ [747r21/ cos(27tx) sin(27y) — 72 cos(7tx) sin(ny)] .

MS25, 12 July 2018
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Manufactured solution

Given a domain Q = [0,1]%, E = 1, v = 0.3 and exact solutions :

u = [sin(27tx) cos(27ty), cos(7tx)sin(my)], w = —0.57sin(7x) sin(7ry) + 7 sin(27x) sin(27ty),
Oy = ﬁ [277 cos(27tx) cos(27ty) + vt cos(rtx) cos(mty)], oyx = % [—0.57t sin(7rx) sin(7ty) — 7w sin(27x) sin(27ty)],
Ty =135 [—0.57sin(7x) sin(rry) — 7 sin(271x) sin(27y)], oy = (15702) [27tv cos(27x) cos(27ty) + 7 cos(7tx) cos(mty)],
fr= ﬁ [74712 sin(27x) cos(27ty) — v7r? sin(7rx) cos(rry)} + % [70.5712 sin(7tx) cos(my) — 272 sin(277x) cos(27ry)] ,
fy= Hiv {70.57‘[2 cos(7tx) sin(7y) — 272 cos(27tx) sin(Zny)} + ﬁ [747r21/ cos(27tx) sin(27y) — 72 cos(7tx) sin(ny)] .

We solve the discrete hybrid mixed formulation in
Q with

f = f exact in Q’

i = trgrad Uexact on 00},

imposed in both orthogonal and heavily distorted

meshes.
Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK
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Numerical results

Manufactured solution : singular element
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Numerical results

Manufactured solution
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Numerical results

Manufactured solution
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Numerical results

Crack : Opening

B The geometry is [—1,1]? with a infinite crack at

x=[-1,0], y=0,
whose right side is mounted on a wall.

B Material properties : E = 100, v = 0.3.

B Opening shear stress :

down __
[ Xy

oy =1, —1.
FIGURE — Opening crack.

B Uniform ph-refinements.

Yi Zhang Delft University of Technology ICOSAHOM, ly 2018, London, UK




Numerical results

Crack : In-plane shear
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FIGURE — In plane shear crack.

Yi Zhang Delft University of Technology

Linear elasticity
[e]e]ele]e] Jele]e]

B The geometry is [—1,1]? with a infinite crack at
x=[-1,0], y=0,
whose right side is mounted on a wall.
B Material properties : E = 100, v = 0.3.
B In plane shear normal stress :
of =1, gdovn = 1,

B Uniform ph-refinements.
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Numerical results

Crack : Opening, stress distribution.
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Numerical results

Crack : In-plane shear, stress distribution.
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Numerical results

Cracks : Complementary strain energy

Yi Zhang Delft University of Technology

TaBLE — Opening.

Linear elasticity

number of elements

OO0000000e

N 16 64 144 256 400 576
2 0.183928  0.180595  0.179565 0.179062 0.178764  0.178566
4 0.180120  0.178812  0.178399  0.178196  0.178075  0.177994
6 0.178970  0.178264 0.178038  0.177926  0.177860  0.177815
8 0.178468  0.178022 0.177878 0.177807 0.177764  0.177736
10 0178202 0.177893  0.177792 0.177743  0.177713  0.177693
12 0178043 0.177815 0.177741 0.177704 0.177682  0.177667
14 0177940 0.177765 0.177708 0.177679  0.177662  0.177651
TaBLE — In plane shear.
number of elements
N 16 64 144 256 400 576
2 0.0180946  0.0180009  0.0179741  0.0179613  0.0179538  0.0179488
4 0.0179924 0.0179557  0.0179450  0.0179398  0.0179368  0.0179348
6 0.0179619  0.0179421  0.0179362  0.0179333  0.0179317  0.0179306
8 0.0179486  0.0179361  0.0179323  0.0179305  0.0179294  0.0179287
10 0.0179415 0.0179328  0.0179302  0.0179289  0.0179282  0.0179277
12 0.0179373  0.0179309  0.0179289  0.0179280  0.0179274  0.0179270
14 0.0179346  0.0179296  0.0179281 0.0179274  0.0179269  0.0179266
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Conclusions

Conclusions

We have proposed a high order spectral element method :

m The method uses integral values as dof’s.

m The method is hybrid; it is very easy to parallelize. Imposing boundary conditions is easy ; we have dof’s on
boundary for both Dirichlet and Neumann boundary conditions.

m The method is mimetic; first-order differential operators can be preserved at the discrete level.

m The method uses dual polynomials; some discrete matrices are metric-free, extremely sparse and low order
finite-difference(volume)-like (containing non-zero entries of —1 and 1 only).

m It can be efficiently solved by solving a reduced system for the interface variable.
Further developments towards Stokes, Euler equations, Navier-Stokes are ongoing.

Thanks a lot. Questions ?

Yi Zhang Delft University of Technology ICOSAHOM, 09-13 July 2018, London, UK
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