Basis functions and discretization

Numerical results and conclusions

A hybrid equilibrium formulation and the discretization with mimetic polynomials and their dual representations

Yi Zhang¹*, Varun Jain²* and Marc Gerritsma³*

*Delft University of Technology

¹y.zhang-14@tudelft.nl ²v.jain@tudelft.nl ³m.i.gerritsma@tudelft.nl

MS5-3, 3 July 2018

Summary

1 Introduction

- Hybrid methods
- Mimetic discretization

2 Hybrid mixed formulation

- Mixed formulation
- Hybrid mixed formulation

3 Basis functions and discretization

- Mimetic basis functions and their dual representations
- Dual representations
- Discretization

4 Numerical results and conclusions

- Manufactured solution
- Cracks
- Conclusions

Introduction	Hybrid mixed formulation	Basis functions and discretization	
00			
Hybrid methods			

Hybrid methods

Hybrid (finite element) methods are those methods that relax the continuity across the inter-element interface by introducing a Lagrange multiplier between elements.

T Lagrange multiplier

For more information about hybrid methods, we refer to Pian¹, Raviart and Thomas², Brezzi and Fortin³.

^{1.} Pian, T.H. Derivation of element stiffness matrices by assumed stress distributions. AIAA journal, (1964) 2(7), 1333-1336.

^{2.} Raviart, P.A. and Thomas, J.M. Primal hybrid finite element methods for 2nd order elliptic equations. Mathematics of computation, (1977) 31(138), 391-413

^{3.} Brezzi, F. and Fortin M. Mixed and hybrid finite element methods. Springer-Verlag, 1991

Introduction	Hybrid mixed formulation	Basis functions and discretization	
00			
Hybrid methods			

Hybrid methods

Hybrid (finite element) methods are those methods that relax the continuity across the inter-element interface by introducing a Lagrange multiplier between elements.

For more information about hybrid methods, we refer to Pian¹, Raviart and Thomas², Brezzi and Fortin³.

^{1.} Pian, T.H. Derivation of element stiffness matrices by assumed stress distributions. AIAA journal, (1964) 2(7), 1333-1336.

^{2.} Raviart, P.A. and Thomas, J.M. Primal hybrid finite element methods for 2nd order elliptic equations. Mathematics of computation, (1977) 31(138), 391-413.

^{3.} Brezzi, F. and Fortin M. Mixed and hybrid finite element methods. Springer-Verlag, 1991

Introduction	Hybrid mixed formulation	Basis functions and discretization	
00			
Hybrid methods			

Hybrid methods

Hybrid (finite element) methods are those methods that relax the continuity across the inter-element interface by introducing a Lagrange multiplier between elements.

↑ Lagrange multiplier

For more information about hybrid methods, we refer to Pian¹, Raviart and Thomas², Brezzi and Fortin³.

^{1.} Pian, T.H. Derivation of element stiffness matrices by assumed stress distributions. AIAA journal, (1964) 2(7), 1333-1336.

^{2.} Raviart, P.A. and Thomas, J.M. Primal hybrid finite element methods for 2nd order elliptic equations. Mathematics of computation, (1977) 31(138), 391-413.

^{3.} Brezzi, F. and Fortin M. Mixed and hybrid finite element methods. Springer-Verlag, 1991.

Introduction	Hybrid mixed formulation	Basis functions and discretization	
00			
Mimetic discretization			

Mimetic methods

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :

$$\begin{split} \mathbb{R} &\to \Omega^{(0)} \stackrel{\text{grad}}{\to} \Omega^{(1)} \stackrel{\text{curl}}{\to} \Omega^{(2)} \stackrel{\text{div}}{\to} \Omega^{(3)} \to 0, \\ &\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ \mathbb{R} &\to \Omega_h^{(0)} \stackrel{\text{grad}}{\to} \Omega_h^{(1)} \stackrel{\text{curl}}{\to} \Omega_h^{(2)} \stackrel{\text{div}}{\to} \Omega_h^{(3)} \to 0. \end{split}$$

Therefore, mimetic methods are also called **structure-preserving** methods.

Hybrid Mimetic Spectral Element Method^{4, 5, 6} is a high order mimetic mixed finite element method.

^{4.} Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.

^{5.} Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics, (2013) 240 : 284-309.

^{6.} Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
00			
Mimetic discretization			
Mimetic methods			

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :

$$\begin{split} \mathbb{R} &\to \Omega^{(0)} \stackrel{\mathrm{grad}}{\to} \Omega^{(1)} \stackrel{\mathrm{curl}}{\to} \Omega^{(2)} \stackrel{\mathrm{div}}{\to} \Omega^{(3)} \to 0, \\ &\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ \mathbb{R} &\to \Omega_h^{(0)} \stackrel{\mathrm{grad}}{\to} \Omega_h^{(1)} \stackrel{\mathrm{curl}}{\to} \Omega_h^{(2)} \stackrel{\mathrm{div}}{\to} \Omega_h^{(3)} \to 0. \end{split}$$

Therefore, mimetic methods are also called structure-preserving methods.

Hybrid Mimetic Spectral Element Method ^{4, 5, 6} is a high order mimetic mixed finite element method.

^{4.} Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.

^{5.} Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics, (2013) 240 : 284-309.

^{6.} Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
00			
Mimetic discretization			
Mimetic methods			

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :

$$\begin{split} \mathbb{R} &\to \Omega^{(0)} \stackrel{\text{grad}}{\to} \Omega^{(1)} \stackrel{\text{curl}}{\to} \Omega^{(2)} \stackrel{\text{div}}{\to} \Omega^{(3)} \to 0, \\ &\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ \mathbb{R} &\to \Omega_h^{(0)} \stackrel{\text{grad}}{\to} \Omega_h^{(1)} \stackrel{\text{curl}}{\to} \Omega_h^{(2)} \stackrel{\text{div}}{\to} \Omega_h^{(3)} \to 0. \end{split}$$

Therefore, mimetic methods are also called structure-preserving methods.

Hybrid Mimetic Spectral Element Method^{4, 5, 6} is a high order mimetic mixed finite element method.

^{4.} Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.

^{5.} Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics, (2013) 240 : 284-309.

^{6.} Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
00			
Mimetic discretization			
Mimetic methods			

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :

$$\begin{split} \mathbb{R} &\to \Omega^{(0)} \stackrel{\text{grad}}{\to} \Omega^{(1)} \stackrel{\text{curl}}{\to} \Omega^{(2)} \stackrel{\text{div}}{\to} \Omega^{(3)} \to 0, \\ &\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ \mathbb{R} &\to \Omega_h^{(0)} \stackrel{\text{grad}}{\to} \Omega_h^{(1)} \stackrel{\text{curl}}{\to} \Omega_h^{(2)} \stackrel{\text{div}}{\to} \Omega_h^{(3)} \to 0. \end{split}$$

Therefore, mimetic methods are also called structure-preserving methods.

Hybrid Mimetic Spectral Element Method^{4,5,6} is a high order mimetic mixed finite element method.

^{4.} Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.

^{5.} Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics, (2013) 240 : 284-309.

^{6.} Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. *Journal of Computational Physics*, (2014) 257 : 1394-1422.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
	• o oo		
Mixed formulation			

Preliminaries

Given an open bounded domain $\Omega \subset \mathbb{R}^d$ with Lipschitz boundary $\partial \Omega$, let $L^2(\Omega)$ be the space of square integrable scalar-valued functions in Ω , then

$$H^{1}(\Omega) := \left\{ \varphi \in L^{2}(\Omega) \middle| \operatorname{grad} \varphi \in \left[L^{2}(\Omega) \right]^{d} \right\},$$
$$H(\operatorname{div}, \Omega) := \left\{ \underline{u} \in \left[L^{2}(\Omega) \right]^{d} \middle| \operatorname{div} \underline{u} \in L^{2}(\Omega) \right\}.$$

And the trace spaces are defined as

$$H^{1/2}(\partial\Omega) := \mathrm{tr}_{\mathrm{grad}} H^1(\Omega), \quad H^{-1/2}(\partial\Omega) := \mathrm{tr}_{\mathrm{div}} H(\mathrm{div},\Omega),$$

which form a pair of dual spaces.

We further introduce notations :

$$\begin{split} \underline{L}^2(\Omega) &:= \left[L^2(\Omega) \right]^d, \quad \underline{H}^1(\Omega) := \left[H^1(\Omega) \right]^d, \quad \underline{\underline{H}}(\operatorname{div}, \Omega) := \left[H(\operatorname{div}, \Omega) \right]^d, \\ \underline{H}^{1/2}(\partial \Omega) &:= \operatorname{tr}_{\operatorname{grad}} \underline{H}^1(\Omega), \quad \underline{\underline{H}}^{-1/2}(\partial \Omega) := \operatorname{tr}_{\operatorname{div}} \underline{H}(\operatorname{div}, \Omega), \end{split}$$

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
	000		
Mixed formulation			

Preliminaries

Given an open bounded domain $\Omega \subset \mathbb{R}^d$ with Lipschitz boundary $\partial \Omega$, let $L^2(\Omega)$ be the space of square integrable scalar-valued functions in Ω , then

$$H^{1}(\Omega) := \left\{ \varphi \in L^{2}(\Omega) \middle| \operatorname{grad} \varphi \in \left[L^{2}(\Omega) \right]^{d} \right\},$$
$$H(\operatorname{div}, \Omega) := \left\{ \underline{u} \in \left[L^{2}(\Omega) \right]^{d} \middle| \operatorname{div} \underline{u} \in L^{2}(\Omega) \right\}.$$

And the trace spaces are defined as

$$H^{1/2}(\partial\Omega) := \mathrm{tr}_{\mathrm{grad}} H^1(\Omega), \quad H^{-1/2}(\partial\Omega) := \mathrm{tr}_{\mathrm{div}} H(\mathrm{div},\Omega),$$

which form a pair of dual spaces.

We further introduce notations :

$$\begin{split} \underline{L}^2(\Omega) &:= \left[L^2(\Omega) \right]^d, \quad \underline{H}^1(\Omega) := \left[H^1(\Omega) \right]^d, \quad \underline{\underline{H}}(\operatorname{div}, \Omega) := \left[H(\operatorname{div}, \Omega) \right]^d, \\ \underline{H}^{1/2}(\partial \Omega) &:= \operatorname{tr}_{\operatorname{grad}} \underline{H}^1(\Omega), \quad \underline{\underline{H}}^{-1/2}(\partial \Omega) := \operatorname{tr}_{\operatorname{div}} \underline{\underline{H}}(\operatorname{div}, \Omega), \end{split}$$

Introduction	Hybrid mixed formulation	Basis functions and discretization	
	0000		
Mixed formulation			

Mixed formulation

Re-write the Lagrange functional⁷ for $(\underline{\underline{\sigma}}, \underline{\underline{u}}, \underline{\omega}) \in \underline{\underline{H}}(\operatorname{div}, \Omega) \times \underline{\underline{L}}^2(\Omega) \times \underline{L}^2(\Omega)$:

$$\mathcal{L}(\underline{\sigma}, \underline{u}, \underline{\omega}; \underline{f}, \underline{\hat{u}}) = (\underline{\sigma}, \mathbf{C}\underline{\sigma})_{L^{2}(\Omega)} - \langle \underline{\hat{u}}, \operatorname{tr}_{\operatorname{div}}\underline{\sigma} \rangle_{\underline{H}^{1/2}(\partial\Omega) \times \underline{\underline{H}}^{-1/2}(\partial\Omega)} + \langle \underline{u}, \operatorname{div}\underline{\sigma} + \underline{f} \rangle_{\underline{\tilde{L}}^{2}(\Omega) \times \underline{L}^{2}(\Omega)} - (\underline{\omega}, \mathbf{T}\underline{\sigma})_{L^{2}(\Omega)},$$

where $\underline{f} \in \underline{L}^2(\Omega)$ and $\underline{\hat{u}} = \operatorname{tr}_{\operatorname{grad}} \underline{u} \in \underline{H}^{1/2}(\partial \Omega)$ are given.

Variational analysis gives rise to following weak mixed formulation : Find $(\underline{\sigma}, \underline{u}, \underline{\omega}) \in \underline{\underline{H}}(\operatorname{div}, \Omega) \times \underline{\underline{L}}^2(\Omega) \times \underline{\underline{L}}^2(\Omega)$ such that

$$\begin{split} \left(C\underline{\underline{\sigma}},\underline{\underline{\sigma}} \right)_{L^{2}(\Omega)} + \langle \underline{\underline{u}}, \operatorname{div} \underline{\underline{\sigma}} \rangle_{\underline{\underline{L}}^{2}(\Omega) \times \underline{\underline{L}}^{2}(\Omega)} - (\underline{\omega}, T\underline{\underline{\sigma}})_{L^{2}(\Omega)} &= \langle \underline{\underline{n}}, \operatorname{tr}_{\operatorname{div}} \underline{\underline{\sigma}} \rangle_{\underline{\underline{H}}^{1/2}(\partial\Omega) \times \underline{\underline{H}}^{-1/2}(\partial\Omega)} \\ \langle \underline{\underline{u}}, \operatorname{div} \underline{\underline{\sigma}} \rangle_{\underline{\underline{L}}^{2}(\Omega) \times \underline{\underline{L}}^{2}(\Omega)} &= - \langle \underline{\underline{u}}, \underline{\underline{f}} \rangle_{\underline{\underline{L}}^{2}(\Omega) \times \underline{\underline{L}}^{2}(\Omega)} &= 0 \end{split}$$

for all $(\underline{\check{\sigma}}, \underline{\check{u}}, \underline{\check{\omega}}) \in \underline{\underline{H}}(\operatorname{div}, \Omega) \times \underline{\check{L}}^2(\Omega) \times \underline{L}^2(\Omega).$

The solution of this weak formulation (the stationary point of the Lagrangian) solves the linear elasticity.

^{7.} Olesen, K., Gervan, B., Reddy, J.N. and Gerritsma, M. A higher-order equilibrium finite element method, Int J Numer Methods Eng, (2018) 144 :1262-1290

Introduction	Hybrid mixed formulation	Basis functions and discretization	
	0000		
Mixed formulation			

Mixed formulation

Re-write the Lagrange functional⁷ for $(\underline{\underline{\sigma}}, \underline{\underline{u}}, \underline{\omega}) \in \underline{\underline{H}}(\operatorname{div}, \Omega) \times \underline{\underline{L}}^2(\Omega) \times \underline{L}^2(\Omega)$:

$$\mathcal{L}(\underline{\sigma}, \underline{u}, \underline{\omega}; \underline{f}, \underline{\hat{u}}) = (\underline{\sigma}, \mathbf{C}\underline{\sigma})_{L^{2}(\Omega)} - \langle \underline{\hat{u}}, \operatorname{tr}_{\operatorname{div}}\underline{\sigma} \rangle_{\underline{H}^{1/2}(\partial\Omega) \times \underline{\underline{H}}^{-1/2}(\partial\Omega)} + \langle \underline{u}, \operatorname{div} \underline{\sigma} + \underline{f} \rangle_{\underline{\tilde{L}}^{2}(\Omega) \times \underline{L}^{2}(\Omega)} - (\underline{\omega}, \mathbf{T}\underline{\sigma})_{L^{2}(\Omega)},$$

where $\underline{f} \in \underline{L}^2(\Omega)$ and $\underline{\hat{u}} = \operatorname{tr}_{\operatorname{grad}} \underline{u} \in \underline{H}^{1/2}(\partial\Omega)$ are given.

Variational analysis gives rise to following weak mixed formulation : Find $(\underline{\sigma}, \underline{u}, \underline{\omega}) \in \underline{\underline{H}}(\operatorname{div}, \Omega) \times \underline{\underline{L}}^2(\Omega) \times \underline{\underline{L}}^2(\Omega)$ such that

$$\begin{cases} (C\underline{\sigma},\underline{\check{\sigma}})_{L^{2}(\Omega)} + \langle \underline{u}, \operatorname{div} \underline{\check{\sigma}} \rangle_{\underline{\check{L}}^{2}(\Omega) \times \underline{L}^{2}(\Omega)} &= \langle \underline{\hat{u}}, \operatorname{tr}_{\operatorname{div}} \underline{\check{\sigma}} \rangle_{\underline{H}^{1/2}(\partial\Omega) \times \underline{H}^{-1/2}(\partial\Omega)} \\ \\ \langle \underline{\check{u}}, \operatorname{div} \underline{\sigma} \rangle_{\underline{\check{L}}^{2}(\Omega) \times \underline{L}^{2}(\Omega)} &= - \langle \underline{\check{u}}, \underline{f} \rangle_{\underline{\check{L}}^{2}(\Omega) \times \underline{L}^{2}(\Omega)} &, \\ \\ - (\underline{\check{\omega}}, \underline{T}\underline{\sigma})_{L^{2}(\Omega)} &= 0 \end{cases}$$

for all $(\underline{\check{\sigma}}, \underline{\check{u}}, \underline{\check{\omega}}) \in \underline{\underline{H}}(\operatorname{div}, \Omega) \times \underline{\check{L}}^2(\Omega) \times \underline{L}^2(\Omega).$

The solution of this weak formulation (the stationary point of the Lagrangian) solves the linear elasticity.

^{7.} Olesen, K., Gervan, B., Reddy, J.N. and Gerritsma, M. A higher-order equilibrium finite element method, Int J Numer Methods Eng, (2018) 144 :1262-1290

Introduction	Hybrid mixed formulation	Basis functions and discretization	
	0000		
Mixed formulation			

Mixed formulation

Re-write the Lagrange functional⁷ for $(\underline{\sigma}, \underline{u}, \underline{\omega}) \in \underline{\underline{H}}(\operatorname{div}, \Omega) \times \underline{\underline{L}}^2(\Omega) \times \underline{\underline{L}}^2(\Omega)$:

$$\mathcal{L}(\underline{\sigma}, \underline{u}, \underline{\omega}; \underline{f}, \underline{\hat{u}}) = (\underline{\sigma}, \mathbf{C}\underline{\sigma})_{L^{2}(\Omega)} - \langle \underline{\hat{u}}, \operatorname{tr}_{\operatorname{div}}\underline{\sigma} \rangle_{\underline{H}^{1/2}(\partial\Omega) \times \underline{\underline{H}}^{-1/2}(\partial\Omega)} + \langle \underline{u}, \operatorname{div} \underline{\sigma} + \underline{f} \rangle_{\underline{\tilde{L}}^{2}(\Omega) \times \underline{L}^{2}(\Omega)} - (\underline{\omega}, \mathbf{T}\underline{\sigma})_{L^{2}(\Omega)},$$

where $\underline{f} \in \underline{L}^2(\Omega)$ and $\underline{\hat{u}} = \operatorname{tr}_{\operatorname{grad}} \underline{u} \in \underline{H}^{1/2}(\partial\Omega)$ are given.

Variational analysis gives rise to following weak mixed formulation : Find $(\underline{\sigma}, \underline{u}, \underline{\omega}) \in \underline{\underline{H}}(\operatorname{div}, \Omega) \times \underline{\underline{L}}^2(\Omega) \times \underline{\underline{L}}^2(\Omega)$ such that

$$\begin{cases} (C\underline{\sigma},\underline{\check{\sigma}})_{L^{2}(\Omega)} + \langle \underline{u}, \operatorname{div} \underline{\check{\sigma}} \rangle_{\underline{\check{L}}^{2}(\Omega) \times \underline{\check{L}}^{2}(\Omega)} - (\underline{\omega}, T\underline{\check{\sigma}})_{L^{2}(\Omega)} &= \langle \underline{\hat{u}}, \operatorname{tr}_{\operatorname{div}}\underline{\check{\sigma}} \rangle_{\underline{\check{H}}^{1/2}(\partial\Omega) \times \underline{\check{H}}^{-1/2}(\partial\Omega)} \\ \langle \underline{\check{u}}, \operatorname{div} \underline{\sigma} \rangle_{\underline{\check{L}}^{2}(\Omega) \times \underline{\check{L}}^{2}(\Omega)} &= - \langle \underline{\check{u}}, \underline{f} \rangle_{\underline{\check{L}}^{2}(\Omega) \times \underline{\check{L}}^{2}(\Omega)} &, \\ - (\underline{\check{\omega}}, T\underline{\sigma})_{L^{2}(\Omega)} &= 0 \end{cases}$$

 $\textit{for all } (\underline{\check{\sigma}},\underline{\check{u}},\underline{\check{\omega}}) \in \underline{\underline{H}}(\textit{div},\Omega) \times \underline{\check{L}}^2(\Omega) \times \underline{L}^2(\Omega).$

The solution of this weak formulation (the stationary point of the Lagrangian) solves the linear elasticity.

^{7.} Olesen, K., Gervan, B., Reddy, J.N. and Gerritsma, M. A higher-order equilibrium finite element method, Int J Numer Methods Eng, (2018) 144 :1262-1290

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
	0000		
Hybrid mixed formulation			

Broken Sobolev spaces

Given an open bounded domain $\Omega \subset \mathbb{R}^d$ with Lipschitz boundary $\partial\Omega$. A mesh, denoted by Ω^h , partitions Ω into K disjoint open elements Ω_k with Lipschitz boundary $\partial\Omega_k$,

$$\bar{\Omega} = \bigcup_{k=1}^{K} \bar{\Omega}_k, \ \Omega_i \cap \Omega_j = \emptyset, \ 1 \le i \ne j \le K.$$

We can break $\underline{L}^2(\Omega)$, $\underline{H}^1(\Omega)$, $\underline{H}(\operatorname{div}, \Omega)$ and obtain the so-called broken Sobolev spaces⁸:

$$\begin{split} \underline{L}^2(\Omega^h) &= \left\{ \left. \underline{u} \in \underline{L}^2(\Omega) \right| \left. \underline{u} \right|_{\Omega_k} \in \underline{L}^2(\Omega_k) \right\} = \prod_{k=1}^K \underline{L}^2(\Omega_k), \\ \underline{H}^1(\Omega^h) &= \left\{ \left. \underline{u} \in \underline{L}^2(\Omega) \right| \left. \underline{u} \right|_{\Omega_k} \in \underline{H}^1(\Omega_k) \right\} = \prod_{k=1}^K \underline{H}^1(\Omega_k), \\ \underline{H}(\operatorname{div}, \Omega^h) &= \left\{ \left. \underline{\sigma} \in \left[\underline{L}^2(\Omega) \right]^d \right| \left. \underline{\sigma} \right|_{\Omega_k} \in \underline{\underline{H}}(\operatorname{div}, \Omega_k) \right\} = \prod_{k=1}^K \underline{\underline{H}}(\operatorname{div}, \Omega_k) \end{split}$$

Spaces for interface functions are then defined as

$$\underline{H}^{1/2}(\partial\Omega^h) := \mathrm{tr}^h_{\mathrm{grad}}\underline{H}^1(\Omega), \qquad \underline{\underline{H}}^{-1/2}(\partial\Omega^h) := \mathrm{tr}^h_{\mathrm{div}}\underline{\underline{H}}(\mathrm{div},\Omega),$$

which are a pair of dual spaces as well. $\operatorname{tr}_{\operatorname{grad}}^{h}$, $\operatorname{tr}_{\operatorname{div}}^{h}$ restrict $\underline{u} \in \underline{H}^{1}(\Omega)$, $\underline{\sigma} \in \underline{\underline{H}}(\operatorname{div}, \Omega)$ onto $\partial \Omega_{h} = \bigcup_{k=1}^{K} \partial \Omega_{k}$.

^{8.} Carstensen, C., Demkowicz, L. and Gopalakrishnan, J. Breaking spaces and forms for the DPG method and applications including Maxwell equations. Computers and Mathematics with Applications, (2016) 72(3) : 494-522.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
	0000		
Hybrid mixed formulation			

Broken Sobolev spaces

Given an open bounded domain $\Omega \subset \mathbb{R}^d$ with Lipschitz boundary $\partial \Omega$. A mesh, denoted by Ω^h , partitions Ω into K disjoint open elements Ω_k with Lipschitz boundary $\partial \Omega_k$,

$$\bar{\Omega} = \bigcup_{k=1}^{K} \bar{\Omega}_k, \ \Omega_i \cap \Omega_j = \emptyset, \ 1 \leq i \neq j \leq K.$$

We can break $\underline{L}^2(\Omega)$, $\underline{H}^1(\Omega)$, $\underline{H}(\operatorname{div}, \Omega)$ and obtain the so-called broken Sobolev spaces ⁸ :

$$\begin{split} \underline{L}^2(\Omega^h) &= \left\{ \left. \underline{u} \in \underline{L}^2(\Omega) \right| \left. \underline{u} \right|_{\Omega_k} \in \underline{L}^2(\Omega_k) \right\} = \prod_{k=1}^K \underline{L}^2(\Omega_k), \\ \underline{H}^1(\Omega^h) &= \left\{ \left. \underline{u} \in \underline{L}^2(\Omega) \right| \left. \underline{u} \right|_{\Omega_k} \in \underline{H}^1(\Omega_k) \right\} = \prod_{k=1}^K \underline{H}^1(\Omega_k), \\ \underline{H}(\operatorname{div}, \Omega^h) &= \left\{ \left. \underline{\sigma} \in \left[\underline{L}^2(\Omega) \right]^d \right| \left. \underline{\sigma} \right|_{\Omega_k} \in \underline{H}(\operatorname{div}, \Omega_k) \right\} = \prod_{k=1}^K \underline{H}(\operatorname{div}, \Omega_k) \end{split}$$

Spaces for interface functions are then defined as

$$\underline{H}^{1/2}(\partial\Omega^h) := \mathrm{tr}^h_{\mathrm{grad}}\underline{H}^1(\Omega), \qquad \underline{\underline{H}}^{-1/2}(\partial\Omega^h) := \mathrm{tr}^h_{\mathrm{div}}\underline{\underline{H}}(\mathrm{div},\Omega),$$

which are a pair of dual spaces as well. $\operatorname{tr}_{\operatorname{dry}}^{h}$ restrict $\underline{u} \in \underline{H}^{1}(\Omega), \underline{\sigma} \in \underline{H}(\operatorname{div}, \Omega)$ onto $\partial \Omega_{h} = \bigcup_{k=1}^{k} \partial \Omega_{k}$.

^{8.} Carstensen, C., Demkowicz, L. and Gopalakrishnan, J. Breaking spaces and forms for the DPG method and applications including Maxwell equations. Computers and Mathematics with Applications, (2016) 72(3) : 494-522.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
	0000		
Hybrid mixed formulation			

Broken Sobolev spaces

Given an open bounded domain $\Omega \subset \mathbb{R}^d$ with Lipschitz boundary $\partial\Omega$. A mesh, denoted by Ω^h , partitions Ω into *K* disjoint open elements Ω_k with Lipschitz boundary $\partial\Omega_k$,

$$\bar{\Omega} = \bigcup_{k=1}^{K} \bar{\Omega}_k, \ \Omega_i \cap \Omega_j = \emptyset, \ 1 \leq i \neq j \leq K.$$

We can break $\underline{L}^2(\Omega)$, $\underline{H}^1(\Omega)$, $\underline{H}(\operatorname{div}, \Omega)$ and obtain the so-called broken Sobolev spaces ⁸ :

$$\begin{split} \underline{L}^2(\Omega^h) &= \left\{ \left. \underline{u} \in \underline{L}^2(\Omega) \right| \left. \underline{u} \right|_{\Omega_k} \in \underline{L}^2(\Omega_k) \right\} = \prod_{k=1}^K \underline{L}^2(\Omega_k), \\ \underline{H}^1(\Omega^h) &= \left\{ \left. \underline{u} \in \underline{L}^2(\Omega) \right| \left. \underline{u} \right|_{\Omega_k} \in \underline{H}^1(\Omega_k) \right\} = \prod_{k=1}^K \underline{H}^1(\Omega_k), \\ \underline{H}(\operatorname{div}, \Omega^h) &= \left\{ \left. \underline{\sigma} \in \left[\underline{L}^2(\Omega) \right]^d \right| \left. \underline{\sigma} \right|_{\Omega_k} \in \underline{H}(\operatorname{div}, \Omega_k) \right\} = \prod_{k=1}^K \underline{H}(\operatorname{div}, \Omega_k) \end{split}$$

Spaces for interface functions are then defined as

$$\underline{H}^{1/2}(\partial \Omega^{h}) := \mathrm{tr}_{\mathrm{grad}}^{h} \underline{H}^{1}(\Omega), \qquad \underline{\underline{H}}^{-1/2}(\partial \Omega^{h}) := \mathrm{tr}_{\mathrm{div}}^{h} \underline{\underline{H}}(\mathrm{div}, \Omega),$$

which are a pair of dual spaces as well. $\operatorname{tr}_{\operatorname{grad}}^{h}$, $\operatorname{tr}_{\operatorname{div}}^{h}$ restrict $\underline{u} \in \underline{H}^{1}(\Omega)$, $\underline{\underline{\sigma}} \in \underline{\underline{H}}(\operatorname{div}, \Omega)$ onto $\partial \Omega_{h} = \bigcup_{k=1}^{K} \partial \Omega_{k}$.

^{8.} Carstensen, C., Demkowicz, L. and Gopalakrishnan, J. Breaking spaces and forms for the DPG method and applications including Maxwell equations. Computers and Mathematics with Applications, (2016) 72(3) : 494-522.

Introduction	
Hybrid mixed	formulation

Basis functions and discretization

Numerical results and conclusions

Hybrid mixed formulation

If we set up a mesh Ω^h in Ω , we get broken spaces :

$\underline{\underline{H}}(\mathrm{div},\Omega^h),\ \underline{H}^1(\Omega^h),\ \underline{L}^2(\Omega^h).$

Introduce a new Lagrange multiplier : $\underline{\overline{u}} \in \underline{H}^{1/2}(\partial \Omega^h \setminus \partial \Omega)$, we have a new functional :

$$\begin{split} \mathcal{L}(\underline{\sigma},\underline{u},\underline{\omega},\underline{\bar{u}};\underline{f},\underline{\hat{u}}) &= \left(\underline{\sigma},\mathbf{C}\underline{\sigma}\right)_{L^{2}(\Omega)} - \left\langle \underline{\hat{u}},\mathrm{tr}_{\mathrm{div}}\underline{\sigma}\right\rangle_{\underline{H}^{1/2}(\partial\Omega)\times\underline{H}^{-1/2}(\partial\Omega)} \\ &- \left\langle \underline{\bar{u}},\mathrm{tr}_{\mathrm{div}}\underline{\sigma}\right\rangle_{\underline{H}^{1/2}(\partial\Omega^{h}\setminus\partial\Omega)\times\underline{H}^{-1/2}(\partial\Omega^{h}\setminus\partial\Omega)} + \left\langle \underline{u},\mathrm{div}\;\underline{\sigma}+\underline{f}\right\rangle_{L^{2}(\Omega)\times L^{2}(\Omega)} - \left(\underline{\omega},\mathbf{T}\underline{\sigma}\right)_{L^{2}(\Omega)},\end{split}$$

Hybrid mixed formulation : Given $\underline{f} \in \underline{L}^2(\Omega)$ and $\underline{\hat{u}} = \operatorname{tr}_{\operatorname{grad}} \underline{u} \in \underline{H}^{1/2}(\partial\Omega)$, find $(\underline{\sigma}, \underline{u}, \underline{\omega}, \underline{\bar{u}}) \in \underline{H}(\operatorname{div}, \Omega^h) \times \underline{\tilde{L}}^2(\Omega^h) \times \underline{L}^2(\Omega^h) \times \underline{H}^{1/2}(\partial\Omega^h \setminus \partial\Omega)$ such that

$$\begin{split} (C\underline{c},\underline{c},\underline{b})_{L^{2}(\Omega)} + \langle \underline{u},\operatorname{div},\underline{c}\rangle_{L^{2}(\Omega)\times L^{2}(\Omega)} - \langle \underline{w},T\underline{c}\rangle_{L^{2}(\Omega)} - \langle \underline{u},\operatorname{tr}_{\operatorname{div}}\underline{c}\rangle_{\underline{H}^{1/2}(\partial\Omega^{k}\setminus\partial\Omega)\times\underline{H}^{-1/2}(\partial\Omega^{k}\setminus\partial\Omega)} &= \langle \underline{b},\operatorname{tr}_{\operatorname{div}}\underline{c}\rangle_{\underline{L}^{2}(\Omega)\times L^{2}(\Omega)} \\ \langle \underline{b},\operatorname{div},\underline{c}\rangle_{L^{2}(\Omega)\times L^{2}(\Omega)} &= -\langle \underline{b},\underline{f}\rangle_{L^{2}(\Omega)\times L^{2}(\Omega)} \\ - \langle \underline{c},\underline{c},\underline{f},\underline{c}\rangle_{L^{2}(\Omega)} &= 0 & \\ \langle \underline{b},\operatorname{tr}_{\operatorname{div}}\underline{c}\rangle_{\underline{H}^{1/2}(\partial\Omega^{k}\setminus\partial\Omega)\times H^{-1/2}(\partial\Omega^{k}\setminus\partial\Omega)} &= 0 \end{split}$$

for all $(\underline{\check{\sigma}}, \underline{\check{u}}, \underline{\check{\omega}}, \underline{\check{u}}) \in \underline{\underline{H}}(\operatorname{div}, \Omega^h) \times \underline{\tilde{L}}^2(\Omega^h) \times \underline{L}^2(\Omega^h) \times \underline{H}^{1/2}(\partial \Omega^h \setminus \partial \Omega).$

It is easy to prove that the interface variable \underline{u} represents the displacement on $\partial \Omega_h \setminus \partial \Omega$.

Introduction	
Hybrid mixed formulation	

Basis functions and discretization

Numerical results and conclusions

Hybrid mixed formulation

If we set up a mesh Ω^h in Ω , we get broken spaces :

$\underline{\underline{H}}(\mathrm{div},\Omega^h),\ \underline{H}^1(\Omega^h),\ \underline{L}^2(\Omega^h).$

Introduce a new Lagrange multiplier : $\underline{\overline{u}} \in \underline{H}^{1/2}(\partial \Omega^h \setminus \partial \Omega)$, we have a new functional :

$$\mathcal{L}(\underline{\sigma}, \underline{u}, \underline{\omega}, \underline{\bar{u}}; \underline{f}, \underline{\hat{u}}) = (\underline{\sigma}, \mathbf{C}\underline{\sigma})_{L^{2}(\Omega)} - \langle \underline{\hat{u}}, \operatorname{tr}_{\operatorname{div}}\underline{\sigma} \rangle_{\underline{H}^{1/2}(\partial\Omega) \times \underline{\underline{H}}^{-1/2}(\partial\Omega)} - \langle \underline{\bar{u}}, \operatorname{tr}_{\operatorname{div}}\underline{\sigma} \rangle_{\underline{\underline{H}}^{1/2}(\partial\Omega^{h} \setminus \partial\Omega) \times \underline{\underline{H}}^{-1/2}(\partial\Omega^{h} \setminus \partial\Omega)} + \langle \underline{u}, \operatorname{div} \underline{\sigma} + \underline{f} \rangle_{L^{2}(\Omega) \times L^{2}(\Omega)} - (\underline{\omega}, \mathbf{T}\underline{\sigma})_{L^{2}(\Omega)},$$

Hybrid mixed formulation : Given $\underline{f} \in \underline{L}^2(\Omega)$ and $\underline{\hat{u}} = \operatorname{tr}_{\operatorname{grad}} \underline{u} \in \underline{H}^{1/2}(\partial\Omega)$, find $(\underline{\sigma}, \underline{u}, \underline{\omega}, \underline{\tilde{u}}) \in \underline{\underline{H}}(\operatorname{div}, \Omega^h) \times \underline{\tilde{L}}^2(\Omega^h) \times \underline{L}^2(\Omega^h) \times \underline{H}^{1/2}(\partial\Omega^h \setminus \partial\Omega)$ such that

$$\begin{split} (\underline{C}\underline{\sigma},\underline{\phi})_{L^{2}(\Omega)} &+ \langle \underline{u}, \operatorname{div} \underline{\sigma} \rangle_{L^{2}(\Omega) \times L^{2}(\Omega)} - \langle \underline{\omega}, \underline{T}\underline{\sigma} \rangle_{L^{2}(\Omega)} - \langle \underline{u}, \operatorname{tr}_{\operatorname{div}}\underline{\sigma} \rangle_{\underline{H}^{1/2}(\partial\Omega^{h} \setminus \partial\Omega) \times \underline{H}^{-1/2}(\partial\Omega^{h} \setminus \partial\Omega)} &= \langle \underline{u}, \operatorname{tr}_{\operatorname{div}}\underline{\sigma} \rangle_{\underline{H}^{1/2}(\partial\Omega) \times L^{2}(\Omega)} \\ &- \langle \underline{u}, \underline{T}\underline{\sigma} \rangle_{L^{2}(\Omega) \times L^{2}(\Omega)} &= 0 \\ - \langle \underline{u}, \underline{T}\underline{\sigma} \rangle_{L^{2}(\Omega)} &= 0 \\ &- \langle \underline{u}, \underline{T}\underline{\sigma} \rangle_{\underline{H}^{-1/2}(\partial\Omega^{h} \setminus \partial\Omega) \times \underline{H}^{-1/2}(\partial\Omega^{h} \setminus \partial\Omega)} &= 0 \end{split}$$

for all $(\underline{\check{\sigma}}, \underline{\check{u}}, \underline{\check{\omega}}, \underline{\check{u}}) \in \underline{\underline{H}}(\operatorname{div}, \Omega^h) \times \underline{\tilde{L}}^2(\Omega^h) \times \underline{L}^2(\Omega^h) \times \underline{H}^{1/2}(\partial \Omega^h \setminus \partial \Omega).$

It is easy to prove that the interface variable $\underline{\overline{\mu}}$ represents the displacement on $\partial \Omega_h \setminus \partial \Omega$.

Introduction	
Hybrid mixed	formulation

Basis functions and discretization

Numerical results and conclusions

Hybrid mixed formulation

If we set up a mesh Ω^h in Ω , we get broken spaces :

$\underline{\underline{H}}(\mathrm{div},\Omega^h),\ \underline{H}^1(\Omega^h),\ \underline{L}^2(\Omega^h).$

Introduce a new Lagrange multiplier : $\underline{\overline{u}} \in \underline{H}^{1/2}(\partial \Omega^h \setminus \partial \Omega)$, we have a new functional :

$$\mathcal{L}(\underline{\sigma}, \underline{u}, \underline{\omega}, \underline{\tilde{u}}; \underline{f}, \underline{\hat{u}}) = (\underline{\sigma}, C\underline{\sigma})_{L^{2}(\Omega)} - \langle \underline{\hat{u}}, \operatorname{tr}_{\operatorname{div}} \underline{\sigma} \rangle_{\underline{H}^{1/2}(\partial\Omega) \times \underline{\underline{H}}^{-1/2}(\partial\Omega)} - \langle \underline{\tilde{u}}, \operatorname{tr}_{\operatorname{div}} \underline{\sigma} \rangle_{\underline{\underline{H}}^{1/2}(\partial\Omega^{h} \setminus \partial\Omega) \times \underline{\underline{H}}^{-1/2}(\partial\Omega^{h} \setminus \partial\Omega)} + \langle \underline{u}, \operatorname{div} \underline{\sigma} + \underline{f} \rangle_{L^{2}(\Omega) \times L^{2}(\Omega)} - (\underline{\omega}, T\underline{\sigma})_{L^{2}(\Omega)},$$

Hybrid mixed formulation : Given $\underline{f} \in \underline{L}^2(\Omega)$ and $\underline{\hat{u}} = \operatorname{tr}_{\operatorname{grad}} \underline{u} \in \underline{H}^{1/2}(\partial\Omega)$, find $(\underline{\sigma}, \underline{u}, \underline{\omega}, \underline{\tilde{u}}) \in \underline{\underline{H}}(\operatorname{div}, \Omega^h) \times \underline{\tilde{L}}^2(\Omega^h) \times \underline{L}^2(\Omega^h) \times \underline{H}^{1/2}(\partial\Omega^h \setminus \partial\Omega)$ such that

$$\begin{split} (C\underline{\sigma},\underline{\breve{\sigma}})_{L^{2}(\Omega)} &+ \langle \underline{u}, \operatorname{div} \underline{\breve{\sigma}} \rangle_{L^{2}(\Omega) \times L^{2}(\Omega)} - \langle \underline{\omega}, T\underline{\breve{\sigma}} \rangle_{L^{2}(\Omega)} - \langle \underline{\breve{u}}, \operatorname{tr}_{\operatorname{div}}\underline{\breve{\sigma}} \rangle_{\underline{H}^{1/2}(\partial\Omega^{h}\setminus\partial\Omega) \times \underline{\underline{H}}^{-1/2}(\partial\Omega^{h}\setminus\partial\Omega)} &= \langle \underline{\check{u}}, \operatorname{tr}_{\operatorname{div}}\underline{\breve{\sigma}} \rangle_{\underline{H}^{1/2}(\partial\Omega) \times L^{2}(\Omega)} \\ &\leq L_{\underline{v}} \langle \underline{u}, \operatorname{div} \underline{\sigma} \rangle_{L^{2}(\Omega) \times L^{2}(\Omega)} &= 0 \\ &- \langle \underline{\breve{u}}, \underline{\tau} \underline{\sigma} \rangle_{L^{2}(\Omega)} &= 0 \\ &- \langle \underline{\breve{u}}, \operatorname{tr}_{\operatorname{div}}\underline{\sigma} \rangle_{\underline{\underline{H}}^{1/2}(\partial\Omega^{h}\setminus\partial\Omega) \times \underline{\underline{H}}^{-1/2}(\partial\Omega^{h}\setminus\partial\Omega)} &= 0 \end{split}$$

for all $(\underline{\check{\sigma}}, \underline{\check{u}}, \underline{\check{\omega}}, \underline{\check{u}}) \in \underline{\underline{H}}(\operatorname{div}, \Omega^h) \times \underline{\check{L}}^2(\Omega^h) \times \underline{L}^2(\Omega^h) \times \underline{H}^{1/2}(\partial \Omega^h \setminus \partial \Omega).$

It is easy to prove that the interface variable \underline{u} represents the displacement on $\partial \Omega_h \setminus \partial \Omega$.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
		••••••	
Mimetic basis functions and their dual representations			

Let $-1 = \xi_0 < \xi_1 < \cdots < \xi_N = 1$ be a partitioning of the interval [-1, 1]. The associated Lagrange polynomials :

 $h_i(\xi), \ \xi \in [-1,1], \ i = 0, 1, \cdots, N$, satisfying $h_i(\xi_j) = \delta_{i,j}$ (Kronecker delta).

The corresponding edge polynomials⁹ are

$$e_i(\xi) = -\sum_{k=0}^{i-1} \frac{\mathrm{d}h_k(\xi)}{\mathrm{d}\xi} = \sum_{k=i}^N \frac{\mathrm{d}h_k(\xi)}{\mathrm{d}\xi}, \ i = 1, 2, \cdots, N, \text{ satisfying } \int_{\xi_{j-1}}^{\xi_j} e_i(\xi) = \delta_{i,j}$$

^{9.} Gerritsma, M. Edge functions for spectral element methods. Spectral and High Order Methods for Partial Differential Equations. Springer, (2011) 199-207

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
		••••••	
Mimetic basis functions and their dual representations			

Let $-1 = \xi_0 < \xi_1 < \cdots < \xi_N = 1$ be a partitioning of the interval [-1, 1]. The associated Lagrange polynomials :

 $h_i(\xi), \ \xi \in [-1,1], \ i = 0, 1, \cdots, N$, satisfying $h_i(\xi_j) = \delta_{i,j}$ (Kronecker delta).

The corresponding edge polynomials⁹ are

$$e_i(\xi) = -\sum_{k=0}^{i-1} \frac{\mathrm{d}h_k(\xi)}{\mathrm{d}\xi} = \sum_{k=i}^N \frac{\mathrm{d}h_k(\xi)}{\mathrm{d}\xi}, \ i = 1, 2, \cdots, N, \text{ satisfying } \int_{\xi_{j-1}}^{\xi_j} e_i(\xi) = \delta_{i,j}.$$

^{9.} Gerritsma, M. Edge functions for spectral element methods. Spectral and High Order Methods for Partial Differential Equations. Springer, (2011) 199-207

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		••••••	
Mimetic basis functions and their dual representations			

Let $-1 = \xi_0 < \xi_1 < \cdots < \xi_N = 1$ be a partitioning of the interval [-1, 1]. The associated Lagrange polynomials :

 $h_i(\xi), \ \xi \in [-1,1], \ i = 0, 1, \cdots, N$, satisfying $h_i(\xi_j) = \delta_{i,j}$ (Kronecker delta).

The corresponding edge polynomials⁹ are

$$e_i(\xi) = -\sum_{k=0}^{i-1} \frac{\mathrm{d}h_k(\xi)}{\mathrm{d}\xi} = \sum_{k=i}^N \frac{\mathrm{d}h_k(\xi)}{\mathrm{d}\xi}, \ i = 1, 2, \cdots, N, \text{ satisfying } \int_{\xi_{j-1}}^{\xi_j} e_i(\xi) = \delta_{i,j}.$$

9. Gerritsma, M. Edge functions for spectral element methods. Spectral and High Order Methods for Partial Differential Equations. Springer, (2011) 199-207

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
		••••••	
Mimetic basis functions and their dual representations			

Let $-1 = \xi_0 < \xi_1 < \cdots < \xi_N = 1$ be a partitioning of the interval [-1, 1]. The associated Lagrange polynomials :

 $h_i(\xi), \ \xi \in [-1,1], \ i = 0, 1, \cdots, N$, satisfying $h_i(\xi_j) = \delta_{i,j}$ (Kronecker delta).

The corresponding edge polynomials⁹ are

$$e_i(\xi) = -\sum_{k=0}^{i-1} \frac{\mathrm{d}h_k(\xi)}{\mathrm{d}\xi} = \sum_{k=i}^N \frac{\mathrm{d}h_k(\xi)}{\mathrm{d}\xi}, \ i = 1, 2, \cdots, N, \text{ satisfying } \int_{\xi_{j-1}}^{\xi_j} e_i(\xi) = \delta_{i,j}.$$

Finite dimensional spaces spanned by $\{h_i(\xi)e_j(\eta), e_i(\xi)h_j(\eta)\}$ and $\{e_i(\xi)e_j(\eta)\}$ satisfy the De Rham complex. Let u, f be expanded as

$$\boldsymbol{u}_{h} = \left(\sum_{i=0}^{N} \sum_{j=1}^{N} u_{ij} h_{i}(\xi) e_{j}(\eta), \sum_{i=1}^{N} \sum_{j=0}^{N} v_{ij} e_{i}(\xi) h_{j}(\eta)\right) \text{ and } f_{h} = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{ij} e_{i}(\xi) e_{j}(\eta)$$

If $f = \operatorname{div} \boldsymbol{u}$, then $f_h = \operatorname{div} \boldsymbol{u}_h$ and

$$f_{h} = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{i,j} e_{i}(\xi) e_{j}(\eta) = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(u_{i,j} - u_{i-1,j} + v_{i,j} - v_{i,j-1} \right) e_{i}(\xi) e_{j}(\eta) = \operatorname{div} \boldsymbol{u}_{h}.$$

^{9.} Gerritsma, M. Edge functions for spectral element methods. Spectral and High Order Methods for Partial Differential Equations. Springer, (2011) 199-207

Basis functions and discretization

Numerical results and conclusions

Mimetic basis functions

FIGURE – Reference domain.

$$u_{h} = \left(\sum_{i=0}^{N} \sum_{j=1}^{N} u_{i,j} h_{i}(\xi) e_{j}(\eta), \sum_{i=1}^{N} \sum_{j=0}^{N} v_{i,j} e_{i}(\xi) h_{j}(\eta)\right),$$

$$f_{h} = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{i,j} e_{i}(\xi) e_{j}(\eta).$$

If
$$f = \operatorname{div} u$$
, then $f_h = \operatorname{div} u_h$:

$$\sum_{i=1}^N \sum_{j=1}^N f_{i,j} e_i(\xi) e_j(\eta) = \sum_{i=1}^N \sum_{j=1}^N (u_{i,j} - u_{i-1,j} + v_{i,j} - v_{i,j-1}) e_i(\xi) e_j(\eta).$$

Collect all equations and write them in vector form, we have

 $f=\mathbb{E}^{2,1}u,$

$\mathbb{E}^{2,1}$ is the discrete div operator.

Basis functions and discretization

Numerical results and conclusions

Mimetic basis functions

$$u_{h} = \left(\sum_{i=0}^{N} \sum_{j=1}^{N} u_{i,j} h_{i}(\xi) e_{j}(\eta), \sum_{i=1}^{N} \sum_{j=0}^{N} v_{i,j} e_{i}(\xi) h_{j}(\eta)\right),$$

$$f_{h} = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{i,j} e_{i}(\xi) e_{j}(\eta).$$

If
$$f = \operatorname{div} u$$
, then $f_h = \operatorname{div} u_h$:

$$\sum_{i=1}^N \sum_{j=1}^N f_{i,j} e_i(\xi) e_j(\eta) = \sum_{i=1}^N \sum_{j=1}^N (u_{i,j} - u_{i-1,j} + v_{i,j} - v_{i,j-1}) e_i(\xi) e_j(\eta).$$

Collect all equations and write them in vector form, we have

 $f=\mathbb{E}^{2,1}u,$

	$\begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$	$^{1}_{-1}$	0	00	0	0	0	0 0	0	0	0	0	$^{-1}_{0}$	$0 \\ -1 \\ 0$	0	1 0	0	0	0	0	0	0	0	0	١
E ^{2,1} =	0	0	0	0	-1 0	1 -1	0	0	0	0	0	0	0	0	0	-1 0	0 -1	0	1 0	0	0	0	0	0	
	000000000000000000000000000000000000000	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	$^{-1}_{0}_{0}_{0}$	1 0 0		$ \begin{array}{c} 0 \\ 1 \\ -1 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ -1 \end{array} $	0 0 0 1	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	$^{-1}_{0}_{0}_{0}$		$ \begin{array}{c} 0 \\ 0 \\ -1 \\ 0 \end{array} $		0 1 0 0	0 0 1 0	0 0 0 1)

$\mathbb{E}^{2,1}$ is the discrete div operator.

Introduction	Hybrid mixed fo
Mimetic basis functions and their dual representations	

mulation

Basis functions and discretization

Numerical results and conclusions

$$u_{h} = \left(\sum_{i=0}^{N} \sum_{j=1}^{N} u_{i,j}' a_{i,j}(\xi,\eta), \sum_{i=1}^{N} \sum_{j=0}^{N} v_{i,j}' b_{i,j}(\xi,\eta)\right),$$

$$f_{h} = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{i,j}' c_{i,j}(\xi,\eta).$$

If $f = \operatorname{div} u_{t}$ then $f_{h} = \operatorname{div} u_{h}$: $\sum_{i=1}^{N} \sum_{i=1}^{N} f'_{i,j} c_{i,j}(\xi,\eta) = \sum_{i=1}^{N} \sum_{i=1}^{N} \left(u'_{i,j} - u'_{i-1,j} + v'_{i,j} - v'_{i,j-1} \right) c_{i,j}(\xi,\eta).$

Collect all equations and write them in vector form, we have

 $f' = \mathbb{E}^{2,1} u'.$

	$\begin{pmatrix} -1 \\ 0 \end{pmatrix}$	1	0	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	0	0	0	0	0)	١
	0	-1	×.	0	0	0	0	0	0	0	0	0	0	-1	0	0	1	0	0	0	0	0	0	0	i.
	0	0	-1	1	0	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	0	0	0	L
	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	0	0	L
$\mathbb{E}^{2,1} =$	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	0	Ŀ
	0	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	0	Ł
	0	0	0	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	0	L
	0	0	0	0	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1	0	L
	0	0	0	0	0	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	$^{-1}$	0	0	1)	/

$\mathbb{E}^{2,1}$ is the discrete div operator.

Introduction Hybrid mixed formulation OO Minetic basis functions and their dual representations Basis functions and discretization

Numerical results and conclusions

Mimetic trace basis functions

FIGURE - Curvilinear domain.

The trace variable $tr_{div}u$ can be discretized as

$$\operatorname{tr}_{\operatorname{div}} \boldsymbol{u}_{h} = \left\{ \sum_{i=1}^{N} v_{i}^{\mathsf{s}} \boldsymbol{e}_{i}'(\boldsymbol{\xi}), \ \sum_{i=1}^{N} v_{i}^{\mathsf{n}} \boldsymbol{e}_{i}'(\boldsymbol{\xi}), \ \sum_{i=1}^{N} u_{i}^{\mathsf{w}} \boldsymbol{e}_{i}'(\boldsymbol{\eta}), \ \sum_{i=1}^{N} u_{i}^{\mathsf{e}} \boldsymbol{e}_{i}'(\boldsymbol{\eta}) \right\}.$$

There is a linear operator, \mathbb{N} , such that

 $u'_{\mathrm{tr}} = \mathbb{N}u',$

where $u'_{tr} = (-v_i^s, v_i^n, -u_i^w, u_i^e)^T$ and

\mathbb{N} is the discrete trace operator.

Introduction Hybrid mixed formulation OO Minetic basis functions and their dual representations Basis functions and discretization

Numerical results and conclusions

Mimetic trace basis functions

FIGURE - Curvilinear domain.

The trace variable $tr_{div}u$ can be discretized as

$$\mathrm{tr}_{\mathrm{div}}\boldsymbol{u}_{h} = \left\{ \sum_{i=1}^{N} v_{i}^{\mathsf{s}} \boldsymbol{e}_{i}'(\boldsymbol{\xi}), \ \sum_{i=1}^{N} v_{i}^{\mathsf{n}} \boldsymbol{e}_{i}'(\boldsymbol{\xi}), \ \sum_{i=1}^{N} u_{i}^{\mathsf{w}} \boldsymbol{e}_{i}'(\boldsymbol{\eta}), \ \sum_{i=1}^{N} u_{i}^{\mathsf{e}} \boldsymbol{e}_{i}'(\boldsymbol{\eta}) \right\}.$$

There is a linear operator, \mathbb{N} , such that

 $u'_{\rm tr} = \mathbb{N}u',$

where $u'_{\text{tr}} = (-v_i^{\text{s}}, v_i^{\text{n}}, -u_i^{\text{w}}, u_i^{\text{e}})^T$ and

	0	0	0	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	0	0	0	0	0	0	0	0	0)	١
- 1	0	0	0	0	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	0	0	0	0	0	0	0	0	L
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$^{-1}$	0	0	0	0	0	0	0	0	0	ł
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	L
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	ł
DI -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	L
IN =	$^{-1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ł
	0	0	0	0	$^{-1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
-	0	0	0	0	0	0	0	0	$^{-1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ł
	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	l
	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0.	1

${\mathbb N}$ is the discrete trace operator.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
		0000000000	
Dual representations			

Let scalar functions p_h and q_h both be expanded in terms of basis functions $\{e_i(\xi)e_j(\eta)\}$,

 $(p_h,q_h)_{L^2(\Omega)}=\boldsymbol{p}^T\mathbf{M}^{(2)}\boldsymbol{q},$

where $\mathbb{M}^{(2)}$ is the mass matrix. We can further define the dual basis functions 10 as

 $\left[\widetilde{e_1(\xi)e_1(\eta)},\cdots, e_N(\widetilde{\xi)e_N(\eta)}\right] := \left[e_1(\xi)e_1(\eta),\cdots, e_N(\xi)e_N(\eta)\right] \mathbb{M}^{(2)^{-1}}$

^{10.} Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017) arXiv :1712.09472.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
		0000000000	
Dual representations			

Let scalar functions p_h and q_h both be expanded in terms of basis functions $\{e_i(\xi)e_j(\eta)\}$,

 $(p_h,q_h)_{L^2(\Omega)}=\boldsymbol{p}^T\mathbf{M}^{(2)}\boldsymbol{q},$

where $\mathbb{M}^{(2)}$ is the mass matrix. We can further define the dual basis functions 10 as

 $\left[\widetilde{e_1(\xi)e_1(\eta)},\cdots,e_N(\widetilde{\xi)e_N(\eta)}\right]:=\left[e_1(\xi)e_1(\eta),\cdots,e_N(\xi)e_N(\eta)\right]\mathbb{M}^{(2)^{-1}}.$

^{10.} Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017) arXiv :1712.09472.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
		0000000000	
Dual representations			

Let scalar functions p_h and q_h both be expanded in terms of basis functions $\{e_i(\xi)e_j(\eta)\}$,

 $(p_h,q_h)_{L^2(\Omega)}=\boldsymbol{p}^T\mathbf{M}^{(2)}\boldsymbol{q},$

where $\mathbb{M}^{(2)}$ is the mass matrix. We can further define the dual basis functions 10 as

10. Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017) arXiv :1712.09472.

Yi Zhang	Delft	University	of	Technol	log
----------	-------	------------	----	---------	-----

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
		0000000000	
Dual representations			

Let scalar functions p_h and q_h both be expanded in terms of basis functions $\{e_i(\xi)e_i(\eta)\}$,

 $(p_h,q_h)_{L^2(\Omega)}=\boldsymbol{p}^T\mathbf{M}^{(2)}\boldsymbol{q},$

 $\left[\widetilde{e_1(\xi)e_1(\eta)},\cdots, e_N(\widetilde{\xi)e_N(\eta)}\right] := \left[e_1(\xi)e_1(\eta),\cdots, e_N(\xi)e_N(\eta)\right] \mathbb{M}^{(2)^{-1}}.$

1.5

0.5

 $i_{i}^{i}(\xi)$

dual edge polynomials

where $\mathbb{M}^{(2)}$ is the mass matrix. We can further define the dual basis functions 10 as

edge polynomials

-2-1.0 -0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0-0.5 0.0 0.5 1.0-0.5 0.0 0.5 1.0-1.0 -0.5 0.0 0.5 1.0-1.0 -0.5 0.0 0.5 1.0

10. Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017) arXiv:1712.09472.

 $_{i}^{\circ}(\xi)$

2

0

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
		0000000000	
Dual representations			

Let scalar functions p_h and q_h both be expanded in terms of basis functions $\{e_i(\xi)e_j(\eta)\}$,

 $(p_h,q_h)_{L^2(\Omega)}=\boldsymbol{p}^T\mathbf{M}^{(2)}\boldsymbol{q},$

where $\mathbb{M}^{(2)}$ is the mass matrix. We can further define the dual basis functions 10 as

$$\left[\widetilde{e_1(\xi)e_1(\eta)},\cdots, e_N(\widetilde{\xi)e_N(\eta)}\right] := \left[e_1(\xi)e_1(\eta),\cdots, e_N(\xi)e_N(\eta)\right] \mathbb{M}^{(2)^{-1}}.$$

If we expand \tilde{p}_h in terms of the dual basis functions $\left\{ e_i(\xi) e_j(\eta) \right\}$, we can obtain

$$\langle \tilde{p}_h, q_h \rangle_{\tilde{L}(\Omega) \times L^2(\Omega)} = \tilde{p}^T q$$
, where $\tilde{p} = \mathbb{M}^{(2)} p$,

$$\langle \tilde{p}_h, q_h \rangle_{\tilde{L}(\Omega) \times L^2(\Omega)} = \langle \mathcal{M}p_h, q_h \rangle_{\tilde{L}(\Omega) \times L^2(\Omega)} = (p_h, q_h)_{L^2(\Omega)}.$$

^{10.} Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017) arXiv :1712.09472.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
		0000000000	
Dual representations			

Let scalar functions p_h and q_h both be expanded in terms of basis functions $\{e_i(\xi)e_i(\eta)\}$,

 $(p_h,q_h)_{L^2(\Omega)}=\boldsymbol{p}^T\mathbf{M}^{(2)}\boldsymbol{q},$

where $\mathbb{M}^{(2)}$ is the mass matrix. We can further define the dual basis functions ¹⁰ as

$$\left[\widetilde{e_1(\xi)e_1(\eta)},\cdots, e_N(\widetilde{\xi)e_N(\eta)}\right] := \left[e_1(\xi)e_1(\eta),\cdots, e_N(\xi)e_N(\eta)\right] \mathbb{M}^{(2)^{-1}}.$$

If we expand \tilde{p}_h in terms of the dual basis functions $\left\{ e_i(\tilde{\xi})e_j(\eta) \right\}$, we can obtain

 $\langle \tilde{p}_h, q_h \rangle_{\tilde{L}(\Omega) \times L^2(\Omega)} = \tilde{p}^T q$, where $\tilde{p} = \mathbb{M}^{(2)} p$,

$$\langle \tilde{p}_h, q_h \rangle_{\tilde{L}(\Omega) \times L^2(\Omega)} = \langle \mathcal{M}p_h, q_h \rangle_{\tilde{L}(\Omega) \times L^2(\Omega)} = (p_h, q_h)_{L^2(\Omega)}.$$

Riesz Representation Theorem : For every $\tilde{u} \in \tilde{V}$, there exists a unique $u \in V$, such that

$$\langle \tilde{u}, v \rangle_{\tilde{V} \times V} = \langle \mathcal{R}u, v \rangle_{\tilde{V} \times V} = (u, v)_V, \forall v \in V,$$

 $\mathcal{R}: \mathbf{u} \in V \rightarrow \tilde{\mathbf{u}} \in \tilde{V}$ is called Riesz mapping.

^{10.} Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017) arXiv :1712.09472.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
		0000000000	
Dual representations			

Let scalar functions p_h and q_h both be expanded in terms of basis functions $\{e_i(\xi)e_j(\eta)\}$,

 $(p_h,q_h)_{L^2(\Omega)}=\boldsymbol{p}^T\mathbf{M}^{(2)}\boldsymbol{q},$

where $\mathbb{M}^{(2)}$ is the mass matrix. We can further define the dual basis functions ¹⁰ as

$$\left[\widetilde{e_1(\xi)e_1(\eta)},\cdots, e_N(\widetilde{\xi)e_N(\eta)}\right] := \left[e_1(\xi)e_1(\eta),\cdots, e_N(\xi)e_N(\eta)\right] \mathbb{M}^{(2)^{-1}}.$$

If we expand \tilde{p}_h in terms of the dual basis functions $\left\{ e_i(\tilde{\xi})e_j(\eta) \right\}$, we can obtain

$$\langle \tilde{p}_h, q_h \rangle_{\tilde{L}(\Omega) \times L^2(\Omega)} = \tilde{p}^T q$$
, where $\tilde{p} = \mathbb{M}^{(2)} p$,

$$\langle \tilde{p}_h, q_h \rangle_{\tilde{L}(\Omega) \times L^2(\Omega)} = \langle \mathcal{M}p_h, q_h \rangle_{\tilde{L}(\Omega) \times L^2(\Omega)} = (p_h, q_h)_{L^2(\Omega)}.$$

Furthermore, if $q_h = \text{div } v_h$, and v_h is expanded by basis functions $\{h_i(\xi)e_j(\eta), e_i(\xi)h_j(\eta)\}$, we have

$$\langle \tilde{p}_h, \operatorname{div} v_h \rangle_{\tilde{L}(\Omega) \times L^2(\Omega)} = \tilde{p}^T \mathbb{E}^{2,1} v.$$

The same idea can be applied to the trace basis functions.

^{10.} Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017) arXiv :1712.09472.

Introduction	Hybrid mixed formulation	Basis functions and discretization
		00000000000
Discustionation		

Numerical results and conclusions

Discretization : Stress, body force and displacement

• For stress $\underline{\sigma}, \underline{\check{\sigma}}; \underline{H}(\operatorname{div}, \Omega_k)$, we choose

$$\begin{bmatrix} \sigma_{xx}^{h} & \sigma_{yx}^{h} \\ \sigma_{xy}^{h} & \sigma_{yy}^{h} \end{bmatrix} \rightarrow \begin{bmatrix} \left\{ h_{i}^{N+1}(\tilde{\boldsymbol{\xi}})e_{j}^{N-1}(\boldsymbol{\eta}) \right\} & \left\{ e_{i}^{N}(\tilde{\boldsymbol{\xi}})h_{j}^{N}(\boldsymbol{\eta}) \right\} \\ \left\{ h_{i}^{N}(\tilde{\boldsymbol{\xi}})e_{j}^{N}(\boldsymbol{\eta}) \right\} & \left\{ e_{i}^{N-1}(\tilde{\boldsymbol{\xi}})h_{j}^{N+1}(\boldsymbol{\eta}) \right\} \end{bmatrix}$$

• For body force f ; $\underline{L}^2(\Omega_k)$, we choose

$$f_x^h, f_y^h \bigg] \to \left[\left\{ e_i^N(\xi) e_j^{N-1}(\eta) \right\}, \left\{ e_i^{N-1}(\xi) e_j^N(\eta) \right\} \right].$$

• For displacement $\underline{u}, \underline{\check{u}}; \underline{\tilde{L}}^2(\Omega_k)$, we choose

Introduction	Hybrid mixed formulation	Basis functions and discretization
		0000000000
Discusting		

Discretization : Stress, body force and displacement

• For stress $\underline{\sigma}, \underline{\check{\sigma}}; \underline{\underline{H}}(\operatorname{div}, \Omega_k)$, we choose

$$\begin{bmatrix} \sigma_{xx}^h & \sigma_{yx}^h \\ \sigma_{xy}^h & \sigma_{yy}^h \end{bmatrix} \rightarrow \begin{bmatrix} \left\{ h_i^{N+1}(\xi)e_j^{N-1}(\eta) \right\} & \left\{ e_i^N(\xi)h_j^N(\eta) \right\} \\ \left\{ h_i^N(\xi)e_j^N(\eta) \right\} & \left\{ e_i^{N-1}(\xi)h_j^{N+1}(\eta) \right\} \end{bmatrix}.$$

• For body force f; $\underline{L}^2(\Omega_k)$, we choose

 $f_x^h, f_y^h \right] \to \left[\left\{ e_i^N(\xi) e_j^{N-1}(\eta) \right\}, \left\{ e_i^{N-1}(\xi) e_j^N(\eta) \right\} \right].$

For displacement \underline{u} , $\underline{\check{u}}$; $\underline{\check{L}}^2(\Omega_k)$, we choose

Introduction	Hybrid mixed formulation	Basis functions and discretization
		0000000000
Discusting		

Discretization : Stress, body force and displacement

• For stress $\underline{\sigma}$, $\underline{\check{\sigma}}$; $\underline{H}(\operatorname{div}, \Omega_k)$, we choose

$$\begin{bmatrix} \sigma^h_{xx} & \sigma^h_{yx} \\ \sigma^h_{xy} & \sigma^h_{yy} \end{bmatrix} \rightarrow \begin{bmatrix} \left\{ h^{N+1}_i(\xi) e^{N-1}_j(\eta) \right\} & \left\{ e^N_i(\xi) h^N_j(\eta) \right\} \\ \left\{ h^N_i(\xi) e^N_j(\eta) \right\} & \left\{ e^{N-1}_i(\xi) h^{N+1}_j(\eta) \right\} \end{bmatrix}.$$

• For body force \underline{f} ; $\underline{L}^2(\Omega_k)$, we choose

$$\left[f_x^h, f_y^h\right] \to \left[\left\{e_i^N(\xi)e_j^{N-1}(\eta)\right\}, \left\{e_i^{N-1}(\xi)e_j^N(\eta)\right\}\right].$$

• For displacement \underline{u} , $\underline{\check{u}}$; $\underline{\check{L}}^{2}(\Omega_{k})$, we choose

Introduction	Hybrid mixed formulation	Basis functions and discretization
		0000000000
Discontinution		

Numerical results and conclusions

Discretization : Stress, body force and displacement

• For stress $\underline{\sigma}, \underline{\check{\sigma}}; \underline{H}(\operatorname{div}, \Omega_k)$, we choose

$$\begin{bmatrix} \sigma_{xx}^h & \sigma_{yx}^h \\ \sigma_{xy}^h & \sigma_{yy}^h \end{bmatrix} \rightarrow \begin{bmatrix} \left\{ h_i^{N+1}(\xi) e_j^{N-1}(\eta) \right\} & \left\{ e_i^N(\xi) h_j^N(\eta) \right\} \\ \left\{ h_i^N(\xi) e_j^N(\eta) \right\} & \left\{ e_i^{N-1}(\xi) h_j^{N+1}(\eta) \right\} \end{bmatrix}.$$

• For body force f; $\underline{L}^2(\Omega_k)$, we choose

$$\left[f_x^h, f_y^h\right] \to \left[\left\{e_i^N(\xi)e_j^{N-1}(\eta)\right\}, \left\{e_i^{N-1}(\xi)e_j^N(\eta)\right\}\right].$$

• For displacement \underline{u} , $\underline{\check{u}}$; $\underline{\check{L}}^2(\Omega_k)$, we choose

$$\left[u_x^h, u_y^h\right] \to \left[\left\{e_i^N(\widetilde{\xi})\widetilde{e_j^{N-1}}(\eta)\right\}, \left\{e_i^{N-1}(\widetilde{\xi})\widetilde{e_j^N}(\eta)\right\}\right]$$

.

Yi Zhang Delft University of Technology

ESMC, 2-6 July 2018, Bologna

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		00000000000	
Discretization			

Discretization : Rotation

• For rotation $\underline{\omega}, \underline{\check{\omega}}; \underline{L}^2(\Omega_k)$ which reduces to a scalar $\omega; L^2(\Omega_k)$ in \mathbb{R}^2 , we choose

$$\omega \to \left\{ h_i^N(\xi) h_j^N(\eta) \right\}.$$

It enforces the symmetry of the stress tensor in each element.

In multiple element case, the kinematic spurious modes are there. So we have to loose the symmetry constraint by reduce the order of the polynomial by 1,

$$\omega \to \left\{ h_i^{N-1}(\xi) h_j^{N-1}(\eta) \right\}$$

sults and conclusions

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		00000000000	
Discretization			

Discretization : Rotation

• For rotation $\underline{\omega}, \underline{\check{\omega}}; \underline{L}^2(\Omega_k)$ which reduces to a scalar $\omega; L^2(\Omega_k)$ in \mathbb{R}^2 , we choose

 $\omega \to \left\{h_i^N(\xi)h_j^N(\eta)\right\}.$

It enforces the symmetry of the stress tensor in each element.

■ In multiple element case, the kinematic spurious modes are there. So we have to loose the symmetry constraint by reduce the order of the polynomial by 1,

$$\omega \to \left\{ h_i^{N-1}(\xi) h_j^{N-1}(\eta) \right\}.$$

Introduction	Hybrid mixed formulation
Discretization	

Basis functions and discretization

Numerical results and conclusions

Discretization : Lagrange multiplier

• For the Lagrange multiplier \underline{u} , $\underline{\check{u}}$; $\underline{H}^{1/2}(\partial \Omega_k)$, we choose

$$\bar{u}_x \to \left\{\widetilde{e_i^N(\xi)}, \widetilde{e_i^N(\xi)}, e_i^{\widetilde{N-1}}(\eta), \widetilde{e_i^{N-1}(\eta)}\right\},$$

corresponding to south, north, west and east boundaries of each element.

Introduction	Hybrid mixed formulation
Discretization	

Basis functions and discretization

Numerical results and conclusions

Discretization : Lagrange multiplier

• For the Lagrange multiplier \underline{u} , $\underline{\check{u}}$; $\underline{H}^{1/2}(\partial \Omega_k)$, we choose

$$\bar{u}_y \to \left\{ \widetilde{e_i^{N-1}(\xi)}, \widetilde{e_i^{N-1}(\xi)}, \widetilde{e_i^N(\eta)}, \widetilde{e_i^N(\eta)} \right\},$$

corresponding to south, north, west and east boundaries of each element.

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		00000000000	
Discretization			

Hybrid mixed formulation

$$\begin{split} & Given f \in \underline{L}^{2}(\Omega) \text{ and } \underline{\hat{u}} = \mathrm{tr}_{\mathrm{grad}} \ \underline{u} \in \underline{H}^{1/2}(\partial\Omega), \text{find } (\underline{\sigma}, \underline{u}, \underline{\omega}, \underline{\hat{u}}) \in \underline{H}(\mathrm{div}, \Omega^{h}) \times \underline{L}^{2}(\Omega^{h}) \times \underline{L}^{2}(\Omega^{h}) \times \underline{H}^{1/2}(\partial\Omega^{h} \setminus \partial\Omega) \\ & \text{such that} \\ & \left\{ \begin{array}{l} (C\underline{\sigma}, \underline{\check{\sigma}})_{L^{2}(\Omega)} + \langle \underline{u}, \mathrm{div} \, \underline{\check{\sigma}} \rangle_{L^{2}(\Omega) \times L^{2}(\Omega)} - \langle \underline{\check{u}}, \mathrm{tr}_{\mathrm{div}} \underline{\check{\sigma}} \rangle_{\underline{H}^{1/2}(\partial\Omega^{h} \setminus \partial\Omega)} & = \langle \underline{\hat{u}}, \mathrm{tr}_{\mathrm{div}} \underline{\check{\sigma}} \rangle_{\underline{H}^{1/2}(\partial\Omega) \times \underline{H}^{-1/2}(\partial\Omega)} \\ & \langle \underline{\check{u}}, \mathrm{div} \ \underline{\sigma} \rangle_{L^{2}(\Omega) \times L^{2}(\Omega)} & = - \langle \underline{\check{u}}, \underline{f} \rangle_{L^{2}(\Omega) \times L^{2}(\Omega)} \\ & - (\underline{\check{\omega}}, \underline{T}\underline{\sigma})_{L^{2}(\Omega)} & = 0 \\ & - \langle \underline{\check{u}}, \mathrm{tr}_{\mathrm{div}} \underline{\check{\sigma}} \rangle_{\underline{H}^{1/2}(\partial\Omega^{h} \setminus \partial\Omega) \times \underline{H}^{-1/2}(\partial\Omega^{h} \setminus \partial\Omega)} & = 0 \\ \end{array} \right\} \\ & \text{for all } (\underline{\check{\sigma}}, \underline{\check{u}}, \underline{\check{\omega}}, \underline{\check{u}}) \in \underline{H}(\mathrm{div}, \Omega^{h}) \times \underline{\check{L}}^{2}(\Omega^{h}) \times \underline{L}^{2}(\Omega^{h}) \times \underline{H}^{1/2}(\partial\Omega^{h} \setminus \partial\Omega). \end{split}$$

Discrete hybrid mixed formulation is

$$\begin{bmatrix} \mathbb{M}^{(1)} & \mathbb{E}^{2,1^T} & -\mathbb{T} & -\mathbb{N}_I^T \\ \mathbb{E}^{2,1} & 0 & 0 & 0 \\ -\mathbb{T}^T & 0 & 0 & 0 \\ -\mathbb{N}_I & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \sigma \\ u \\ \omega \\ \bar{u} \end{pmatrix} = \begin{pmatrix} \mathbb{N}_B^T \hat{u} \\ -f \\ 0 \\ 0 \end{pmatrix}.$$

nclusions

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		00000000000000	
Discretization			

Discrete hybrid mixed formulation :

$$\begin{bmatrix} \mathbb{M}^{(1)} & \mathbb{E}^{2,1^T} & -\mathbb{T} & -\mathbb{N}_I^T \\ \mathbb{E}^{2,1} & 0 & 0 & 0 \\ -\mathbb{T}^T & 0 & 0 & 0 \\ -\mathbb{N}_I & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \sigma \\ u \\ \omega \\ \bar{u} \end{pmatrix} = \begin{pmatrix} \mathbb{N}_B^T t \\ -f \\ 0 \\ 0 \end{pmatrix}$$

- $\blacksquare \mathbb{M}^{(1)}$: element-wise-block-diagonal; metric-dependent;
- **T** : element-wise-block-diagonal; metric-dependent;
- **E**^{2,1} : element-wise block-diagonal; metric-free; ±1 non-zero entries; super sparse;
- **N** : metric-free; ±1 non-zero entries; even more sparse;

We can easily eliminate σ , u and ω , and obtain a system for the discrete interface variable \bar{u} ,

$$H\bar{u}=F$$
,

where

$$\begin{split} \mathbb{H} &= -\mathbb{N}_{l} \mathbb{M}^{(1)^{-1}} \left[\mathbb{M}^{(1)} - \mathbb{S}^{T} \left(\mathbb{S} \mathbb{M}^{(1)^{-1}} \mathbb{S}^{T} \right)^{-1} \mathbb{S} \right] \mathbb{M}^{(1)^{-1}} \mathbb{N}_{l}^{T}, \\ \mathbb{F} &= \mathbb{F}_{\hat{u}} + \mathbb{F}_{g}, \\ \mathbb{F}_{\hat{u}} &= \mathbb{N}_{l} \mathbb{M}^{(1)^{-1}} \left[\mathbb{M}^{(1)} - \mathbb{S}^{T} \left(\mathbb{S} \mathbb{M}^{(1)^{-1}} \mathbb{S}^{T} \right)^{-1} \mathbb{S} \right] \mathbb{M}^{(1)^{-1}} \mathbb{N}_{B}^{T} \hat{u}, \\ \mathbb{F}_{g} &= -\mathbb{N}_{l} \mathbb{M}^{(1)^{-1}} \mathbb{S}^{T} \left(\mathbb{S} \mathbb{M}^{(1)^{-1}} \mathbb{S}^{T} \right)^{-1} g, \\ \mathbb{S}^{T} &= \left[\mathbb{E}^{2,1^{T}} - \mathbb{T} \right], g = \left(-f^{T} - 0 \right)^{T}. \end{split}$$

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		00000000000	
Discretization			

Discrete hybrid mixed formulation :

$$\begin{bmatrix} \mathbb{M}^{(1)} & \mathbb{E}^{2,1}^T & -\mathbb{T} & -\mathbb{N}_I^T \\ \mathbb{E}^{2,1} & 0 & 0 & 0 \\ -\mathbb{T}^T & 0 & 0 & 0 \\ -\mathbb{N}_I & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \sigma \\ u \\ \omega \\ \bar{u} \end{pmatrix} = \begin{pmatrix} \mathbb{N}_B^T \hat{u} \\ -f \\ 0 \\ 0 \end{pmatrix}$$

- \blacksquare $\mathbb{M}^{(1)}$: element-wise-block-diagonal; metric-dependent;
- **T** : element-wise-block-diagonal; metric-dependent;
- **E**^{2,1} : element-wise block-diagonal; metric-free; ±1 non-zero entries; super sparse;
- **N** : metric-free; ±1 non-zero entries; even more sparse;

We can easily eliminate σ , u and ω , and obtain a system for the discrete interface variable \bar{u} ,

$$\mathbb{H}\bar{u}=\mathbb{F},$$

where

$$\begin{split} \mathbf{H} &= -\mathbf{N}_{l} \mathbf{M}^{(1)}^{-1} \left[\mathbf{M}^{(1)} - \mathbf{S}^{T} \left(\mathbf{S} \mathbf{M}^{(1)}^{-1} \mathbf{S}^{T} \right)^{-1} \mathbf{S} \right] \mathbf{M}^{(1)}^{-1} \mathbf{N}_{l}^{T}, \\ \mathbf{F} &= \mathbf{F}_{\hat{u}} + \mathbf{F}_{g}, \\ \mathbf{F}_{\hat{u}} &= \mathbf{N}_{l} \mathbf{M}^{(1)}^{-1} \left[\mathbf{M}^{(1)} - \mathbf{S}^{T} \left(\mathbf{S} \mathbf{M}^{(1)}^{-1} \mathbf{S}^{T} \right)^{-1} \mathbf{S} \right] \mathbf{M}^{(1)}^{-1} \mathbf{N}_{B}^{T} \hat{u}, \\ \mathbf{F}_{g} &= -\mathbf{N}_{l} \mathbf{M}^{(1)}^{-1} \mathbf{S}^{T} \left(\mathbf{S} \mathbf{M}^{(1)}^{-1} \mathbf{S}^{T} \right)^{-1} g, \\ \mathbf{S}^{T} &= \begin{bmatrix} \mathbf{E}^{2,1^{T}} & -\mathbf{T} \end{bmatrix}, \ g &= (-f^{T} \quad 0)^{T}. \end{split}$$

Introduction	Hybrid mixed formulation	Basis functions and discretization	
		0000000000	
Discretization			

Discrete hybrid mixed formulation :

$$\begin{bmatrix} \mathbb{M}^{(1)} & \mathbb{E}^{2,1}^T & -\mathbb{T} & -\mathbb{N}_I^T \\ \mathbb{E}^{2,1} & 0 & 0 & 0 \\ -\mathbb{T}^T & 0 & 0 & 0 \\ -\mathbb{N}_I & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \sigma \\ u \\ \omega \\ \bar{u} \end{pmatrix} = \begin{pmatrix} \mathbb{N}_B^T \hat{u} \\ -f \\ 0 \\ 0 \end{pmatrix}$$

- **M**⁽¹⁾ : element-wise-block-diagonal; metric-dependent;
- **T** : element-wise-block-diagonal; metric-dependent;
- **E**^{2,1} : element-wise block-diagonal; metric-free; ±1 non-zero entries; super sparse;
- **N** : metric-free; ±1 non-zero entries; even more sparse;

We can easily eliminate σ , u and ω , and obtain a system for the discrete interface variable \bar{u} ,

$$\mathbb{H}\bar{u}=\mathbb{F},$$

- Inverting M⁽¹⁾ and SM^{(1)⁻¹}S^T is easy (in parallel) because they are element-wise-block-diagonal.
 Solving for *ū* is cheap (smaller system size and condition number).
- Remaining local problems for σ , u and ω are trivial because $(\mathbb{SM}^{(1)^{-1}}\mathbb{S}^T)^{-1}$ is already computed.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
			• 000 000000
Manufactured solution			
Manufactured	solution		

Given a domain $\Omega = [0, 1]^2$, E = 1, $\nu = 0.3$ and exact solutions :

$$\begin{split} \boldsymbol{u} &= \left[\sin(2\pi x)\cos(2\pi y),\ \cos(\pi x)\sin(\pi y)\right],\ \boldsymbol{\omega} = -0.5\pi\sin(\pi x)\sin(\pi y) + \pi\sin(2\pi x)\sin(2\pi y),\\ \sigma_{xx} &= \frac{E}{(1-v^2)}\left[2\pi\cos(2\pi x)\cos(2\pi y) + \nu\pi\cos(\pi x)\cos(\pi y)\right],\ \sigma_{yx} = \frac{E}{1+v}\left[-0.5\pi\sin(\pi x)\sin(\pi y) - \pi\sin(2\pi x)\sin(2\pi y)\right],\\ \sigma_{xy} &= \frac{E}{1+v}\left[-0.5\pi\sin(\pi x)\sin(\pi y) - \pi\sin(2\pi x)\sin(2\pi y)\right],\ \sigma_{yy} = \frac{E}{(1-v^2)}\left[2\pi\nu\cos(2\pi x)\cos(2\pi y) + \pi\cos(\pi x)\cos(\pi y)\right],\\ f_x &= \frac{E}{(1-v^2)}\left[-4\pi^2\sin(2\pi x)\cos(2\pi y) - \nu\pi^2\sin(\pi x)\cos(\pi y)\right] + \frac{E}{1+v}\left[-0.5\pi^2\sin(\pi x)\cos(\pi y) - 2\pi^2\sin(2\pi x)\cos(2\pi y)\right],\\ f_y &= \frac{E}{1+v}\left[-0.5\pi^2\cos(\pi x)\sin(\pi y) - 2\pi^2\cos(2\pi x)\sin(2\pi y)\right] + \frac{E}{(1-v^2)}\left[-4\pi^2\nu\cos(2\pi x)\sin(2\pi y) - \pi^2\cos(\pi x)\sin(\pi y)\right]. \end{split}$$

We solve the discrete hybrid mixed formulation in Ω with

$$f = f_{\text{exact}} \qquad \text{in } \Omega,$$
$$\hat{u} = \text{tr}_{\text{grad}} \ u_{\text{exact}} \qquad \text{on } \partial\Omega,$$

imposed in both orthogonal and heavily distorted meshes.

Introduction	Hybrid mixed formulation	Basis functions and discretization	Numerical results and conclusions
			• 000 000000
Manufactured solution			
Manufactured	solution		

Given a domain $\Omega = [0, 1]^2$, E = 1, $\nu = 0.3$ and exact solutions :

$$\begin{split} \boldsymbol{u} &= \left[\sin(2\pi x)\cos(2\pi y),\ \cos(\pi x)\sin(\pi y)\right],\ \boldsymbol{\omega} = -0.5\pi\sin(\pi x)\sin(\pi y) + \pi\sin(2\pi x)\sin(2\pi y),\\ \sigma_{xx} &= \frac{E}{(1-v^2)}\left[2\pi\cos(2\pi x)\cos(2\pi y) + \nu\pi\cos(\pi x)\cos(\pi y)\right],\ \sigma_{yx} = \frac{E}{1+v}\left[-0.5\pi\sin(\pi x)\sin(\pi y) - \pi\sin(2\pi x)\sin(2\pi y)\right],\\ \sigma_{xy} &= \frac{E}{1+v}\left[-0.5\pi\sin(\pi x)\sin(\pi y) - \pi\sin(2\pi x)\sin(2\pi y)\right],\ \sigma_{yy} = \frac{E}{(1-v^2)}\left[2\pi\nu\cos(2\pi x)\cos(2\pi y) + \pi\cos(\pi x)\cos(\pi y)\right],\\ f_x &= \frac{E}{(1-v^2)}\left[-4\pi^2\sin(2\pi x)\cos(2\pi y) - \nu\pi^2\sin(\pi x)\cos(\pi y)\right] + \frac{E}{1+v}\left[-0.5\pi^2\sin(\pi x)\cos(\pi y) - 2\pi^2\sin(2\pi x)\cos(2\pi y)\right],\\ f_y &= \frac{E}{1+v}\left[-0.5\pi^2\cos(\pi x)\sin(\pi y) - 2\pi^2\cos(2\pi x)\sin(2\pi y)\right] + \frac{E}{(1-v^2)}\left[-4\pi^2\nu\cos(2\pi x)\sin(2\pi y) - \pi^2\cos(\pi x)\sin(\pi y)\right]. \end{split}$$

We solve the discrete hybrid mixed formulation in $\boldsymbol{\Omega}$ with

$$f = f_{\text{exact}} \qquad \text{in } \Omega,$$

$$\hat{u} = \text{tr}_{\text{grad}} \ u_{\text{exact}} \qquad \text{on } \partial\Omega,$$

imposed in both orthogonal and heavily distorted meshes.

Introduction	Hybrid mixed
Manufactured solution	

Basis functions and discretization

Numerical results and conclusions

Manufactured solution : singular element

Yi Zhang Delft University of Technology

Basis functions and discretization

Numerical results and conclusions

Manufactured solution

Yi Zhang Delft University of Technology

Basis functions and discretization

Numerical results and conclusions

Manufactured solution

Yi Zhang Delft University of Technology

Introdu	
00	
Cracks	

Crack : Opening

Hybrid mixed formulation

Basis functions and discretization

Numerical results and conclusions

FIGURE – Opening crack.

The geometry is $[-1, 1]^2$ with a infinite crack at

$$x = [-1, 0], y = 0,$$

whose right side is mounted on a wall.

• Material properties : E = 100, $\nu = 0.3$.

■ Opening shear stress :

$$\sigma_{xy}^{up} = 1, \ \sigma_{xy}^{down} = -1.$$

■ Uniformly *ph*-refinements.

Introduction	
Cracks	

Basis functions and discretization

Numerical results and conclusions

Crack : In-plane shear

FIGURE – In plane shear crack.

■ The geometry is $[-1,1]^2$ with a infinite crack at

x = [-1, 0], y = 0,

whose right side is mounted on a wall.

• Material properties : E = 100, $\nu = 0.3$.

■ In plane shear normal stress :

 $\sigma_{xx}^{up} = 1, \ \sigma_{xx}^{down} = -1.$

■ Uniformly *ph*-refinements.

Introduction		
Cracks		

Basis functions and discretization

Numerical results and conclusions

Crack : Opening, stress distribution.

Introduction	Hybrid mixed formulation
Cracks	

Basis functions and discretization

Numerical results and conclusions 00000000000

Crack : In-plane shear, stress distribution.

Basis functions and discretization

Numerical results and conclusions

Cracks : Complementary strain energy

TABLE - Opening.

			number o	f elements		
Ν	16	64	144	256	400	576
2	0.183928	0.180595	0.179565	0.179062	0.178764	0.178566
4	0.180120	0.178812	0.178399	0.178196	0.178075	0.177994
6	0.178970	0.178264	0.178038	0.177926	0.177860	0.177815
8	0.178468	0.178022	0.177878	0.177807	0.177764	0.177736
10	0.178202	0.177893	0.177792	0.177743	0.177713	0.177693
12	0.178043	0.177815	0.177741	0.177704	0.177682	0.177667
14	0.177940	0.177765	0.177708	0.177679	0.177662	0.177651

TABLE – In plane shear.

			number o	f elements		
Ν	16	64	144	256	400	576
2	0.0180946	0.0180009	0.0179741	0.0179613	0.0179538	0.0179488
4	0.0179924	0.0179557	0.0179450	0.0179398	0.0179368	0.0179348
6	0.0179619	0.0179421	0.0179362	0.0179333	0.0179317	0.0179306
8	0.0179486	0.0179361	0.0179323	0.0179305	0.0179294	0.0179287
10	0.0179415	0.0179328	0.0179302	0.0179289	0.0179282	0.0179277
12	0.0179373	0.0179309	0.0179289	0.0179280	0.0179274	0.0179270
14	0.0179346	0.0179296	0.0179281	0.0179274	0.0179269	0.0179266

We have proposed a high order spectral element method for linear elasticity :

- The method uses integral values as dof's.
- The method is hybrid. So it is very easy to parallelize. And imposing boundary conditions is easy; we have dof's on boundary for both Dirichlet and Neumann boundary conditions.
- The method is mimetic; the divergence operator is preserved at the discrete level.
- The method uses dual polynomials. As a result, most blocks are metric-free, extremely sparse and low order finite-difference(volume)-like (containing non-zero entries of -1 and 1 only).
- It can be efficiently solved by solving a reduced system for the interface variable.

These features make the method a preferable one.

We have proposed a high order spectral element method for linear elasticity :

■ The method uses integral values as dof's.

- The method is hybrid. So it is very easy to parallelize. And imposing boundary conditions is easy; we have dof's on boundary for both Dirichlet and Neumann boundary conditions.
- The method is mimetic; the divergence operator is preserved at the discrete level.
- The method uses dual polynomials. As a result, most blocks are metric-free, extremely sparse and low order finite-difference(volume)-like (containing non-zero entries of -1 and 1 only).
- It can be efficiently solved by solving a reduced system for the interface variable.

These features make the method a preferable one.

Introduction	Hybrid mi
Conclusions	

Basis functions and discretization

Numerical results and conclusions

Conclusions

We have proposed a high order spectral element method for linear elasticity :

- The method uses integral values as dof's.
- The method is hybrid. So it is very easy to parallelize. And imposing boundary conditions is easy; we have dof's on boundary for both Dirichlet and Neumann boundary conditions.
- The method is mimetic; the divergence operator is preserved at the discrete level.
- The method uses dual polynomials. As a result, most blocks are metric-free, extremely sparse and low order finite-difference(volume)-like (containing non-zero entries of -1 and 1 only).
- It can be efficiently solved by solving a reduced system for the interface variable.

These features make the method a preferable one.

Introduction	Hybrid mixed fo
Conclusions	

We have proposed a high order spectral element method for linear elasticity :

- The method uses integral values as dof's.
- The method is hybrid. So it is very easy to parallelize. And imposing boundary conditions is easy; we have dof's on boundary for both Dirichlet and Neumann boundary conditions.
- The method is mimetic; the divergence operator is preserved at the discrete level.

Introduction	Hybrid mixed f
Conclusions	

We have proposed a high order spectral element method for linear elasticity :

rmulation

- The method uses integral values as dof's.
- The method is hybrid. So it is very easy to parallelize. And imposing boundary conditions is easy; we have dof's on boundary for both Dirichlet and Neumann boundary conditions.
- The method is mimetic; the divergence operator is preserved at the discrete level.
- The method uses dual polynomials. As a result, most blocks are metric-free, extremely sparse and low order finite-difference(volume)-like (containing non-zero entries of −1 and 1 only).

■ It can be efficiently solved by solving a reduced system for the interface variable.

These features make the method a preferable one.

Introduction	Hybrid mixed
Conclusions	

We have proposed a high order spectral element method for linear elasticity :

- The method uses integral values as dof's.
- The method is hybrid. So it is very easy to parallelize. And imposing boundary conditions is easy; we have dof's on boundary for both Dirichlet and Neumann boundary conditions.
- The method is mimetic; the divergence operator is preserved at the discrete level.
- The method uses dual polynomials. As a result, most blocks are metric-free, extremely sparse and low order finite-difference(volume)-like (containing non-zero entries of −1 and 1 only).
- It can be efficiently solved by solving a reduced system for the interface variable.

These features make the method a preferable one.

Introduction	Hybrid mixed f
Conclusions	

We have proposed a high order spectral element method for linear elasticity :

rmulation

- The method uses integral values as dof's.
- The method is hybrid. So it is very easy to parallelize. And imposing boundary conditions is easy; we have dof's on boundary for both Dirichlet and Neumann boundary conditions.
- The method is mimetic; the divergence operator is preserved at the discrete level.
- The method uses dual polynomials. As a result, most blocks are metric-free, extremely sparse and low order finite-difference(volume)-like (containing non-zero entries of −1 and 1 only).
- It can be efficiently solved by solving a reduced system for the interface variable.

These features make the method a preferable one.