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Hybrid methods

Hybrid methods

Hybrid (finite element) methods are those methods that relax the continuity across the inter-element interface by
introducing a Lagrange multiplier between elements.

↑
Lagrange multiplier

For more information about hybrid methods, we refer to Pian 1, Raviart and Thomas 2, Brezzi and Fortin 3.

1. Pian, T.H. Derivation of element stiffness matrices by assumed stress distributions. AIAA journal, (1964) 2(7), 1333-1336.
2. Raviart, P.A. and Thomas, J.M. Primal hybrid finite element methods for 2nd order elliptic equations. Mathematics of computation, (1977) 31(138), 391-413.
3. Brezzi, F. and Fortin M. Mixed and hybrid finite element methods. Springer-Verlag, 1991.
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Mimetic discretization

Mimetic methods

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :

R→ Ω(0) grad→ Ω(1) curl→ Ω(2) div→ Ω(3) → 0,

↓ ↓ ↓ ↓

R→ Ω(0)
h

grad→ Ω(1)
h

curl→ Ω(2)
h

div→ Ω(3)
h → 0.

Therefore, mimetic methods are also called structure-preserving methods.

Hybrid Mimetic Spectral Element Method 4, 5, 6 is a high order mimetic mixed finite element method.

4. Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.
5. Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics,

(2013) 240 : 284-309.
6. Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to

the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.
Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna MS5-3, 3 July 2018 4 / 30



Introduction Hybrid mixed formulation Basis functions and discretization Numerical results and conclusions

Mimetic discretization

Mimetic methods

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :

R→ Ω(0) grad→ Ω(1) curl→ Ω(2) div→ Ω(3) → 0,

↓ ↓ ↓ ↓

R→ Ω(0)
h

grad→ Ω(1)
h

curl→ Ω(2)
h

div→ Ω(3)
h → 0.

Therefore, mimetic methods are also called structure-preserving methods.

Hybrid Mimetic Spectral Element Method 4, 5, 6 is a high order mimetic mixed finite element method.

4. Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.
5. Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics,

(2013) 240 : 284-309.
6. Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to

the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.
Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna MS5-3, 3 July 2018 4 / 30



Introduction Hybrid mixed formulation Basis functions and discretization Numerical results and conclusions

Mimetic discretization

Mimetic methods

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :

R→ Ω(0) grad→ Ω(1) curl→ Ω(2) div→ Ω(3) → 0,

↓ ↓ ↓ ↓

R→ Ω(0)
h

grad→ Ω(1)
h

curl→ Ω(2)
h

div→ Ω(3)
h → 0.

Therefore, mimetic methods are also called structure-preserving methods.

Hybrid Mimetic Spectral Element Method 4, 5, 6 is a high order mimetic mixed finite element method.

4. Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.
5. Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics,

(2013) 240 : 284-309.
6. Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to

the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.
Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna MS5-3, 3 July 2018 4 / 30



Introduction Hybrid mixed formulation Basis functions and discretization Numerical results and conclusions

Mimetic discretization

Mimetic methods

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.

A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :

R→ Ω(0) grad→ Ω(1) curl→ Ω(2) div→ Ω(3) → 0,

↓ ↓ ↓ ↓

R→ Ω(0)
h

grad→ Ω(1)
h

curl→ Ω(2)
h

div→ Ω(3)
h → 0.

Therefore, mimetic methods are also called structure-preserving methods.

Hybrid Mimetic Spectral Element Method 4, 5, 6 is a high order mimetic mixed finite element method.

4. Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.
5. Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics,

(2013) 240 : 284-309.
6. Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to

the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.
Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna MS5-3, 3 July 2018 4 / 30



Introduction Hybrid mixed formulation Basis functions and discretization Numerical results and conclusions

Mixed formulation

Preliminaries

Given an open bounded domain Ω ⊂ Rd with Lipschitz boundary ∂Ω, let L2(Ω) be the space of square integrable
scalar-valued functions in Ω, then

H1(Ω) :=
{

ϕ ∈ L2(Ω)
∣∣∣ grad ϕ ∈

[
L2(Ω)

]d
}

,

H(div, Ω) :=
{

u ∈
[
L2(Ω)

]d
∣∣∣∣div u ∈ L2(Ω)

}
.

And the trace spaces are defined as

H1/2(∂Ω) := trgradH1(Ω), H−1/2(∂Ω) := trdivH(div, Ω),

which form a pair of dual spaces.

We further introduce notations :

L2(Ω) :=
[
L2(Ω)

]d
, H1(Ω) :=

[
H1(Ω)

]d
, H(div, Ω) := [H(div, Ω)]d .

H1/2(∂Ω) := trgradH1(Ω), H−1/2(∂Ω) := trdivH(div, Ω),

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna MS5-3, 3 July 2018 5 / 30



Introduction Hybrid mixed formulation Basis functions and discretization Numerical results and conclusions

Mixed formulation

Preliminaries

Given an open bounded domain Ω ⊂ Rd with Lipschitz boundary ∂Ω, let L2(Ω) be the space of square integrable
scalar-valued functions in Ω, then

H1(Ω) :=
{

ϕ ∈ L2(Ω)
∣∣∣ grad ϕ ∈

[
L2(Ω)

]d
}

,

H(div, Ω) :=
{

u ∈
[
L2(Ω)

]d
∣∣∣∣div u ∈ L2(Ω)

}
.

And the trace spaces are defined as

H1/2(∂Ω) := trgradH1(Ω), H−1/2(∂Ω) := trdivH(div, Ω),

which form a pair of dual spaces.

We further introduce notations :

L2(Ω) :=
[
L2(Ω)

]d
, H1(Ω) :=

[
H1(Ω)

]d
, H(div, Ω) := [H(div, Ω)]d .

H1/2(∂Ω) := trgradH1(Ω), H−1/2(∂Ω) := trdivH(div, Ω),

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna MS5-3, 3 July 2018 5 / 30



Introduction Hybrid mixed formulation Basis functions and discretization Numerical results and conclusions

Mixed formulation

Mixed formulation

Re-write the Lagrange functional 7 for
(
σ, u, ω

)
∈ H(div, Ω)× L̃2

(Ω)× L2(Ω) :

L(σ, u, ω; f , û) =
(
σ, Cσ

)
L2(Ω)

−
〈
û, trdivσ

〉
H1/2(∂Ω)×H−1/2(∂Ω)

+
〈

u, div σ + f
〉

L̃2
(Ω)×L2(Ω)

−
(
ω, Tσ

)
L2(Ω)

,

where f ∈ L2(Ω) and û = trgrad u ∈ H1/2(∂Ω) are given.

Variational analysis gives rise to following weak mixed formulation : Find (σ, u, ω) ∈ H(div, Ω)× L̃2
(Ω)× L2(Ω)

such that




(
Cσ, σ̌

)
L2(Ω)

+
〈
u, div σ̌

〉
L̃2

(Ω)×L2(Ω)
−
(
ω, Tσ̌

)
L2(Ω)

=
〈
û, trdivσ̌

〉
H1/2(∂Ω)×H−1/2(∂Ω)

〈
ǔ, div σ

〉
L̃2

(Ω)×L2(Ω)
= −

〈
ǔ, f
〉

L̃2
(Ω)×L2(Ω)

−
(
ω̌, Tσ

)
L2(Ω)

= 0

,

for all (σ̌, ǔ, ω̌) ∈ H(div, Ω)× L̃2
(Ω)× L2(Ω).

The solution of this weak formulation (the stationary point of the Lagrangian) solves the linear elasticity.

7. Olesen, K., Gervan, B., Reddy, J.N. and Gerritsma, M. A higher-order equilibrium finite element method, Int J Numer Methods Eng, (2018) 144 :1262-1290
Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna MS5-3, 3 July 2018 6 / 30
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(
σ, Cσ

)
L2(Ω)

−
〈
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Hybrid mixed formulation

Broken Sobolev spaces

Given an open bounded domain Ω ⊂ Rd with Lipschitz boundary ∂Ω. A mesh, denoted by Ωh, partitions Ω into
K disjoint open elements Ωk with Lipschitz boundary ∂Ωk,

Ω̄ =
⋃K

k=1 Ω̄k, Ωi ∩Ωj = ∅, 1 ≤ i 6= j ≤ K.

We can break L2(Ω), H1(Ω), H(div, Ω) and obtain the so-called broken Sobolev spaces 8 :

L2(Ωh) =
{

u ∈ L2(Ω)
∣∣∣ u|Ωk

∈ L2(Ωk)
}
=

K

∏
k=1

L2(Ωk),

H1(Ωh) =
{

u ∈ L2(Ω)
∣∣∣ u|Ωk

∈ H1(Ωk)
}
=

K

∏
k=1

H1(Ωk),

H(div, Ωh) =

{
σ ∈

[
L2(Ω)

]d
∣∣∣∣ σ
∣∣
Ωk
∈ H(div, Ωk)

}
=

K

∏
k=1

H(div, Ωk).

Spaces for interface functions are then defined as

H1/2(∂Ωh) := trh
gradH1(Ω), H−1/2(∂Ωh) := trh

divH(div, Ω),

which are a pair of dual spaces as well. trh
grad, trh

div restrict u ∈ H1(Ω), σ ∈ H(div, Ω) onto ∂Ωh =
⋃K

k=1 ∂Ωk.

8. Carstensen, C., Demkowicz, L. and Gopalakrishnan, J. Breaking spaces and forms for the DPG method and applications including Maxwell equations.
Computers and Mathematics with Applications, (2016) 72(3) : 494-522.
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Hybrid mixed formulation

Hybrid mixed formulation

If we set up a mesh Ωh in Ω, we get broken spaces :

H(div, Ωh), H1(Ωh), L2(Ωh).

Introduce a new Lagrange multiplier : ū ∈ H1/2(∂Ωh\∂Ω), we have a new functional :

L(σ, u, ω, ū; f , û) =
(
σ, Cσ

)
L2(Ω)

−
〈
û, trdivσ

〉
H1/2(∂Ω)×H−1/2(∂Ω)

−
〈
ū, trdivσ

〉
H1/2(∂Ωh\∂Ω)×H−1/2(∂Ωh\∂Ω)

+
〈

u, div σ + f
〉

L̃2(Ω)×L2(Ω)
−
(
ω, Tσ

)
L2(Ω)

,

Hybrid mixed formulation : Given f ∈ L2(Ω) and û = trgrad u ∈ H1/2(∂Ω), find (σ, u, ω, ū) ∈ H(div, Ωh) ×
L̃2
(Ωh)× L2(Ωh)×H1/2(∂Ωh\∂Ω) such that





(
Cσ, σ̌

)
L2(Ω)

+
〈
u, div σ̌

〉
L̃2(Ω)×L2(Ω)

−
(
ω, Tσ̌

)
L2(Ω)

−
〈
ū, trdivσ̌

〉
H1/2(∂Ωh\∂Ω)×H−1/2(∂Ωh\∂Ω)

=
〈
û, trdivσ̌

〉
H1/2(∂Ω)×H−1/2(∂Ω)

〈
ǔ, div σ

〉
L̃2(Ω)×L2(Ω)

= −
〈

ǔ, f
〉

L̃2(Ω)×L2(Ω)

−
(
ω̌, Tσ

)
L2(Ω)
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ū, trdivσ̌

〉
H1/2(∂Ωh\∂Ω)×H−1/2(∂Ωh\∂Ω)

=
〈
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Mimetic basis functions and their dual representations

Mimetic basis functions

Let −1 = ξ0 < ξ1 < · · · < ξN = 1 be a partitioning of the interval [−1, 1]. The associated Lagrange polynomials :

hi(ξ), ξ ∈ [−1, 1], i = 0, 1, · · · , N, satisfying hi(ξj) = δi,j (Kronecker delta).

The corresponding edge polynomials 9 are

ei(ξ) = −
i−1

∑
k=0

dhk(ξ)

dξ
=

N

∑
k=i

dhk(ξ)

dξ
, i = 1, 2, · · · , N, satisfying

∫ ξj

ξj−1

ei(ξ) = δi,j.

9. Gerritsma, M. Edge functions for spectral element methods. Spectral and High Order Methods for Partial Differential Equations. Springer, (2011) 199-207
Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna MS5-3, 3 July 2018 9 / 30
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Mimetic basis functions

Figure – Reference domain.
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N
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i=0

N
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ui,jhi(ξ)ej(η),
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i=1
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∑
j=1

(
ui,j − ui−1,j + vi,j − vi,j−1

)
ei(ξ)ej(η).

Collect all equations and write them in vector form, we have

f = E2,1u,

E2,1 =




−1 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 −1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 −1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 −1 0 0 1




.

E2,1 is the discrete div operator.
Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna MS5-3, 3 July 2018 10 / 30
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Mimetic trace basis functions

Figure – Curvilinear domain.

The trace variable trdivu can be discretized as

trdivuh =

{
N

∑
i=1

vs
i e′i(ξ),

N

∑
i=1

vn
i e′i(ξ),

N

∑
i=1

uw
i e′i(η),

N

∑
i=1

ue
i e′i(η)

}
.

There is a linear operator, N, such that

u′tr = Nu′,

where u′tr = (−vs
i , vn

i ,−uw
i , ue

i )
T and

N =




0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0




.

N is the discrete trace operator.
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Dual representations

Dual representations

Let scalar functions ph and qh both be expanded in terms of basis functions
{

ei(ξ)ej(η)
}

,

(ph, qh)L2(Ω) = pTM(2)q,

where M(2) is the mass matrix. We can further define the dual basis functions 10 as
[

˜e1(ξ)e1(η), · · · , ˜eN(ξ)eN(η)
]

:= [e1(ξ)e1(η), · · · , eN(ξ)eN(η)]M(2)−1
.

10. Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017)
arXiv :1712.09472.
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Discretization

Discretization : Stress, body force and displacement

For stress σ, σ̌ ; H(div, Ωk), we choose
[

σh
xx σh

yx
σh

xy σh
yy

]
→


{

hN+1
i (ξ)eN−1

j (η)
} {

eN
i (ξ)h

N
j (η)

}
{

hN
i (ξ)e

N
j (η)

} {
eN−1

i (ξ)hN+1
j (η)

}

 .

For body force f ; L2(Ωk), we choose[
f h
x , f h

y

]
→
[{

eN
i (ξ)e

N−1
j (η)

}
,
{

eN−1
i (ξ)eN

j (η)
}]

.

For displacement u, ǔ ; L̃2
(Ωk), we choose[

uh
x, uh

y

]
→
[{

˜eN
i (ξ)e

N−1
j (η)

}
,
{

˜eN−1
i (ξ)eN

j (η)

}]
.
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Discretization

Discretization : Rotation

For rotation ω, ω̌ ; L2(Ωk) which reduces to a scalar ω ; L2(Ωk) in R2 , we choose

ω →
{

hN
i (ξ)h

N
j (η)

}
.

It enforces the symmetry of the stress tensor in each element.
In multiple element case, the kinematic spurious modes are there. So we have to loose the symmetry
constraint by reduce the order of the polynomial by 1,

ω →
{

hN−1
i (ξ)hN−1

j (η)
}

.
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Discretization

Discretization : Lagrange multiplier

For the Lagrange multiplier ū, ˇ̄u ; H1/2(∂Ωk), we choose

ūx →
{

ẽN
i (ξ), ẽN

i (ξ),
˜eN−1
i (η), ˜eN−1

i (η)

}
,

corresponding to south, north, west and east boundaries
of each element.
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i (ξ), ˜eN−1

i (ξ), ẽN
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Discretization

Discretization

Hybrid mixed formulation

Given f ∈ L2(Ω) and û = trgrad u ∈ H1/2(∂Ω), find (σ, u, ω, ū) ∈ H(div, Ωh)× L̃2
(Ωh)× L2(Ωh)×H1/2(∂Ωh\∂Ω)

such that




(
Cσ, σ̌

)
L2(Ω)

+
〈
u, div σ̌

〉
L̃2(Ω)×L2(Ω)

−
(
ω, Tσ̌

)
L2(Ω)

−
〈
ū, trdivσ̌

〉
H1/2(∂Ωh\∂Ω)×H−1/2(∂Ωh\∂Ω)

=
〈
û, trdivσ̌

〉
H1/2(∂Ω)×H−1/2(∂Ω)

〈
ǔ, div σ

〉
L̃2(Ω)×L2(Ω)

= −
〈

ǔ, f
〉

L̃2(Ω)×L2(Ω)

−
(
ω̌, Tσ

)
L2(Ω)

= 0

−
〈

ˇ̄u, trdivσ
〉

H1/2(∂Ωh\∂Ω)×H−1/2(∂Ωh\∂Ω)
= 0

,

for all (σ̌, ǔ, ω̌, ˇ̄u) ∈ H(div, Ωh)× L̃2
(Ωh)× L2(Ωh)×H1/2(∂Ωh\∂Ω).

Discrete hybrid mixed formulation is



M(1) E2,1T −T −NT
I

E2,1 0 0 0
−TT 0 0 0
−NI 0 0 0







σ
u
ω
ū


 =




NT
Bû
−f
0
0


 .
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Discretization

Discretization
Discrete hybrid mixed formulation :




M(1) E2,1T −T −NT
I

E2,1 0 0 0
−TT 0 0 0
−NI 0 0 0







σ
u
ω
ū


 =




NT
Bû
−f
0
0




M(1) : element-wise-block-diagonal ; metric-dependent ;

T : element-wise-block-diagonal ; metric-dependent ;

E2,1 : element-wise block-diagonal ; metric-free ; ±1 non-zero
entries ; super sparse ;

N : metric-free ; ±1 non-zero entries ; even more sparse ;

We can easily eliminate σ, u and ω, and obtain a system for the discrete interface variable ū,

Hū = F,

where
H = −NIM

(1)−1
[

M(1) − ST
(

SM(1)−1
ST
)−1

S

]
M(1)−1

NT
I ,

F = Fû + Fg ,

Fû = NIM
(1)−1

[
M(1) − ST

(
SM(1)−1

ST
)−1

S

]
M(1)−1

NT
Bû,

Fg = −NIM
(1)−1

ST
(

SM(1)−1
ST
)−1

g,

ST =
[
E2,1T −T

]
, g =

(
−f T 0

)T .
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We can easily eliminate σ, u and ω, and obtain a system for the discrete interface variable ū,

Hū = F,

Inverting M(1) and SM(1)−1
ST is easy (in parallel) because they are element-wise-block-diagonal.

Solving for ū is cheap (smaller system size and condition number).

Remaining local problems for σ, u and ω are trivial because (SM(1)−1
ST)−1 is already computed.
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Manufactured solution

Manufactured solution

Given a domain Ω = [0, 1]2, E = 1, ν = 0.3 and exact solutions :

u = [sin(2πx) cos(2πy), cos(πx) sin(πy)] , ω = −0.5π sin(πx) sin(πy) + π sin(2πx) sin(2πy),

σxx =
E

(1− v2)
[2π cos(2πx) cos(2πy) + νπ cos(πx) cos(πy)] , σyx =

E
1 + v

[−0.5π sin(πx) sin(πy)− π sin(2πx) sin(2πy)] ,

σxy =
E

1 + v
[−0.5π sin(πx) sin(πy)− π sin(2πx) sin(2πy)] , σyy =

E
(1− v2)

[2πν cos(2πx) cos(2πy) + π cos(πx) cos(πy)] ,

fx =
E

(1− ν2)

[
−4π2 sin(2πx) cos(2πy)− νπ2 sin(πx) cos(πy)

]
+

E
1 + ν

[
−0.5π2 sin(πx) cos(πy)− 2π2 sin(2πx) cos(2πy)

]
,

fy =
E

1 + ν

[
−0.5π2 cos(πx) sin(πy)− 2π2 cos(2πx) sin(2πy)

]
+

E
(1− ν2)

[
−4π2ν cos(2πx) sin(2πy)− π2 cos(πx) sin(πy)

]
.

We solve the discrete hybrid mixed formulation in
Ω with

f = f exact in Ω,

û = trgrad uexact on ∂Ω,

imposed in both orthogonal and heavily distorted
meshes.
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Manufactured solution

Manufactured solution : singular element
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Manufactured solution
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Cracks

Crack : Opening

Figure – Opening crack.

� The geometry is [−1, 1]2 with a infinite crack at

x = [−1, 0], y = 0,

whose right side is mounted on a wall.

� Material properties : E = 100, ν = 0.3.

� Opening shear stress :

σ
up
xy = 1, σdown

xy = −1.

� Uniformly ph-refinements.
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Cracks

Crack : In-plane shear

Figure – In plane shear crack.

� The geometry is [−1, 1]2 with a infinite crack at

x = [−1, 0], y = 0,

whose right side is mounted on a wall.

� Material properties : E = 100, ν = 0.3.

� In plane shear normal stress :

σ
up
xx = 1, σdown

xx = −1.

� Uniformly ph-refinements.
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Cracks

Crack : Opening, stress distribution.
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Cracks

Crack : In-plane shear, stress distribution.
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Cracks

Cracks : Complementary strain energy

Table – Opening.

N
number of elements

16 64 144 256 400 576
2 0.183928 0.180595 0.179565 0.179062 0.178764 0.178566
4 0.180120 0.178812 0.178399 0.178196 0.178075 0.177994
6 0.178970 0.178264 0.178038 0.177926 0.177860 0.177815
8 0.178468 0.178022 0.177878 0.177807 0.177764 0.177736
10 0.178202 0.177893 0.177792 0.177743 0.177713 0.177693
12 0.178043 0.177815 0.177741 0.177704 0.177682 0.177667
14 0.177940 0.177765 0.177708 0.177679 0.177662 0.177651

Table – In plane shear.

N
number of elements

16 64 144 256 400 576
2 0.0180946 0.0180009 0.0179741 0.0179613 0.0179538 0.0179488
4 0.0179924 0.0179557 0.0179450 0.0179398 0.0179368 0.0179348
6 0.0179619 0.0179421 0.0179362 0.0179333 0.0179317 0.0179306
8 0.0179486 0.0179361 0.0179323 0.0179305 0.0179294 0.0179287
10 0.0179415 0.0179328 0.0179302 0.0179289 0.0179282 0.0179277
12 0.0179373 0.0179309 0.0179289 0.0179280 0.0179274 0.0179270
14 0.0179346 0.0179296 0.0179281 0.0179274 0.0179269 0.0179266
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Conclusions

Conclusions

We have proposed a high order spectral element method for linear elasticity :

The method uses integral values as dof’s.

The method is hybrid. So it is very easy to parallelize. And imposing boundary conditions is easy ; we have
dof’s on boundary for both Dirichlet and Neumann boundary conditions.

The method is mimetic ; the divergence operator is preserved at the discrete level.

The method uses dual polynomials. As a result, most blocks are metric-free, extremely sparse and low order
finite-difference(volume)-like (containing non-zero entries of −1 and 1 only).

It can be efficiently solved by solving a reduced system for the interface variable.

These features make the method a preferable one.

Thanks a lot. Questions ?
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