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°
Hybrid methods

Hybrid methods

Hybrid (finite element) methods are those methods that relax the continuity across the inter-element interface by
introducing a Lagrange multiplier between elements.
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Introduction

°
Hybrid methods

Hybrid methods

Hybrid (finite element) methods are those methods that relax the continuity across the inter-element interface by
introducing a Lagrange multiplier between elements.

T

Lagrange multiplier

For more information about hybrid methods, we refer to Pian 1 Raviart and Thomas?2, Brezzi and Fortin 3.

1. Pian, T.H. Derivation of element stiffness matrices by assumed stress distributions. AIAA journal, (1964) 2(7), 1333-1336.
2. Raviart, P.A. and Thomas, J.M. Primal hybrid finite element methods for 2nd order elliptic equations. Mathematics of computation, (1977) 31(138), 391-413.
3. Brezzi, F. and Fortin M. Mixed and hybrid finite element methods. Springer-Verlag, 1991.
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Mimetic methods

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.
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Introduction

Mimetic discretization

Mimetic methods

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.
A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :
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Therefore, mimetic methods are also called structure-preserving methods.
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Introduction

Mimetic discretization

Mimetic methods

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.
A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :

R - QO #4002 diy 56) ¢
1

i 4 i
R — 0 & ot el ) diy () _,
Therefore, mimetic methods are also called structure-preserving methods.

d4.5,6

Mimetic Spectral Element Metho is a high order mimetic mixed finite element method.

4. Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.

5. Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics,
(2013) 240 : 284-309.

6. Palha, A., Rebelo, PP.,, Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to
the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.
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Introduction

Mimetic discretization

Mimetic methods

Mimetic methods aim to preserve the structure of partial differential equations at the discrete level.
A key feature of mimetic mixed finite element methods is that their function spaces satisfy the De Rham complex :
grad
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Therefore, mimetic methods are also called structure-preserving methods.

Hybrid Mimetic Spectral Element Method
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Hybrid mixed formulation
 Je]
Mixed formulation

Preliminaries

Given an open bounded domain Q C R? with Lipschitz boundary dQ), let L?(Q)) be the space of square integrable
scalar-valued functions in ), then

HY(Q) = {q) € LZ(Q)‘ grad ¢ € [LZ(Q)TI},

H(div, Q) = {z € [LZ(O)]d

divue Lz(Q)} .
And the trace spaces are defined as
HY2(30) := trgqH' (Q), H V2(30) := trg; H(div, Q),

which form a pair of dual spaces.
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Mixed formulation

Preliminaries

Given an open bounded domain Q C R? with Lipschitz boundary dQ), let L?(Q)) be the space of square integrable
scalar-valued functions in ), then

HY(Q) = {q) € LZ(Q)‘ grad ¢ € [LZ(Q)TI},

H(div, Q) = {z € [LZ(O)]d

divue Lz(Q)} .
And the trace spaces are defined as

HY2(30) := trgqH' (Q), H V2(30) := trg; H(div, Q),
which form a pair of dual spaces.

We further introduce notations :

L2(Q) = [LZ(Q)]d, HY(Q) = [Hl(Q)]d, H(div, Q) := [H(div, Q)]

HY2(30) := trgqH' (Q), H 2(30) := trg; H(div, Q)
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Hybrid mixed formulation
oe
Mixed formulation

Mixed formulation

Re-write the Lagrange functional” for (¢, u, w) € H(div, Q) x LZ(Q) x L2(Q) :

ﬁ(g%@[@) (g/ Cg)Lz(Q) - <ﬁ/trdivg>dl/2(ag)xg 12(30)) <u div U+f>l (Q)xI2(0) - (% Tg)LZ(Q) ’

where f € L2(Q) and &t = trgrad U € H'2(3Q)) are given.

7. Olesen, K., Gervan, B., Reddy, ].N. and Gerritsma, M. A higher-order equilibrium finite element method, Int ] Numer Methods Eng, (2018) 144 :1262-1290
Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna 3July2018  6/30




Hybrid mixed formulation
oe
Mixed formulation

Mixed formulation

Re-write the Lagrange functional” for (¢, u, w) € H(div, Q) x LZ(Q) x L2(Q) :

Pz~ @TDwa);

E(g%%zrﬁ) = (g/ Cg)LZ(Q) - <ﬁ/ trdivg>dl/2(ag)xﬂ 1/2(39) <u div U+f>
where f € L2(Q) and &t = trgrad U € H'2(3Q)) are given.

Variational analysis gives rise to following weak mixed formulation : Find (¢, u,w) € H(div, Q) x LZ(Q) x L2(Q)

such that
(CQQ)LZ(Q) (u, div 0>L 2 xL2(Q) — (0, TF )LZ(Q) =1, trdivg>ﬂ1/z(amng/zwn)
(i1, div g>L2(Q)XLZ(Q> - <Jf> 2(Q)xL2(Q) ’
— (@, TZ)U(Q) =0

for all (&1, @) € H(div, Q) x L*(Q) x L*(Q).

7. Olesen, K., Gervan, B., Reddy, ].N. and Gerritsma, M. A higher-order equilibrium finite element method, Int ] Numer Methods Eng, (2018) 144 :1262-1290
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Hybrid mixed formulation
oe
Mixed formulation

Mixed formulation

Re-write the Lagrange functional” for (¢, u, w) € H(div, Q) x LZ(Q) x L2(Q) :

Pz~ @TDwa);

E(g%%zrﬁ) = (g/ Cg)LZ(Q) - <ﬁ/ trdivg>dl/2(ag)xﬂ 1/2(39) <u div U+f>
where f € L2(Q) and &t = trgrad U € H'2(3Q)) are given.

Variational analysis gives rise to following weak mixed formulation : Find (¢, u,w) € H(div, Q) x LZ(Q) x L2(Q)

such that
(CQQ)LZ(Q) (u, div 0>L 2 xL2(Q) — (0, TF )LZ(Q) =1, trdivg>ﬂ1/z(amng/zwn)
(i1, div g>L2(Q)XLZ(Q> - <Jf> 2(Q)xL2(Q) ’
— (@, TZ)U(Q) =0

for all (&1, @) € H(div, Q) x L*(Q) x L*(Q).

The solution of this weak formulation (the stationary point of the Lagrangian) solves the linear elasticity.

7. Olesen, K., Gervan, B., Reddy, ].N. and Gerritsma, M. A higher-order equilibrium finite element method, Int ] Numer Methods Eng, (2018) 144 :1262-1290
Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna MS5-3, 3 July 2018




Hybrid mixed formulation
LIe]
Hybrid mixed formulation

Broken Sobolev spaces

Given an open bounded domain () C R4 with Lipschitz boundary 0Q). A mesh, denoted by on, partitions () into
K disjoint open elements () with Lipschitz boundary o€},

O=U_1 0 N0 =0, 1<i#j<K
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ixed formulation

Hybrid mixed formulation

Broken Sobolev spaces

Given an open bounded domain () C R4 with Lipschitz boundary 0Q). A mesh, denoted by on, partitions () into
K disjoint open elements () with Lipschitz boundary o€},

O=U_1 0 N0 =0, 1<i#j<K
We can break L2(Q}), H'(Q),H(div, Q) and obtain the so-called broken Sobolev spaces® :

L2(0") = {u e LX(Q)| ulg, € LX)} = [T,
k=1
K
#(0") = {u € O] ulo, € (O} = TTH (),
=1
K
H(div, Q") = {g € [LZ(Q)] o, €H(div, Qk)} =TI H(div, ).
k=1

8. Carstensen, C., Demkowicz, L. and Gopalakrishnan, J. Breaking spaces and forms for the DPG method and applications including Maxwell equations.

Computers and Mathematics with Applications, (2016) 72(3) : 494-522.

ESMC, 2-6 July 2018, Bologna
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Hybrid mixed formulation

LIe]

Hybrid mixed formulation

Broken Sobolev spaces

Given an open bounded domain () C R4 with Lipschitz boundary 0Q). A mesh, denoted by on, partitions () into

K disjoint open elements () with Lipschitz boundary o€},
O=U_1 0 N0 =0, 1<i#j<K

We can break L2(Q}), H'(Q),H(div, Q) and obtain the so-called broken Sobolev spaces® :

L2(0") = {u e LX(Q)| ulg, € LX)} = [T,
k=1
(@) = {u € L3O al, € H(O)} = f[al(nw,
=1
K
H(div, Q") = {g € [LZ(Q)] olq, € Hdiv, Qk)} =TI H(div, ).
k=1

Spaces for interface functions are then defined as
H 200" := !y H(div, Q),

H'?(00") =t gH'(Q),
which are a pair of dual spaces as well. trgrad, trﬁiv restrict u € ﬂl(Q), g € H(div,Q) onto 90, = Ule QY.

8. Carstensen, C., Demkowicz, L. and Gopalakrishnan, J. Breaking spaces and forms for the DPG method and applications including Maxwell equations.

Computers and Mathematics with Applications, (2016) 72(3) : 494-522.
ESMC, 2-6 July 2018, Bologna
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Hybrid mixed formulation
oe
Hybrid mixed formulation

Hybrid mixed formulation

If we set up a mesh O"in O, we get broken spaces :
g(div, Qh), H] (Qh)’ LZ(Q]1>~
Introduce a new Lagrange multiplier : i € H'/?(9Q2"\9Q2), we have a new functional :

L(gw w B, ) = (& CT) 12y — (b traiv®) y1/2 50 i 172000

- <Q/ trdivg>ﬂl/2(aah\\()0) xg*”z(a(}” \00Q) + <ﬂ/ div a +£>£2(Q)><L2(O) - (% Tg)L2<Q) ’
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Hybrid mixed formulation
oe
Hybrid mixed formulation

Hybrid mixed formulation

If we set up a mesh O"in O, we get broken spaces :
g(div, Qh), H] (Qh)’ LZ(Q]1>~
Introduce a new Lagrange multiplier : i € H'/?(9Q2"\9Q2), we have a new functional :

Llguw @ Bf, ) = (& C) ) — (B i) /2300 e 12000

— (@, trgsy 0‘>H1/2 (00M30) xH 12 (30 20) + <u div 0'+f> - (w, Tg)Lzm) ’

[2(Q)xL2(Q)
Hybrid mixed formulation : Given f € L2(Q) and &t = trgraq U € H'2(3Q), find (o, u,w, @) € H(div,Q") x
L2(Ql) x L2(Q) x HY2(9QY"\0Q) such that

(Cg, ”)LZ(n) + (u div Z>l2(0)><L2(O) (w T”)Lz(n) — (& trdn@uwz‘am 90)xH12(00Ma0) (L, trdiv@gl/z(an)xgl/z(fm)
(& div U>LZ(0)xL2(O) T <Jf>L2(Q)xL2(o)
— (@, TU)LZ(Q) =0

_/5 —
(i, trgiy g/ﬁlxz\dor: 90) xH1/2(3011\20) =0

for all (&, 1, @, 1) € H(div, Q") x L2(Q") x L2(Q") x H/2(30/\20).
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Hybrid mixed formulation
oe
Hybrid mixed formulation

Hybrid mixed formulation

If we set up a mesh O"in O, we get broken spaces :
g(div, Qh), H] (Qh)’ LZ(Q]1>~
Introduce a new Lagrange multiplier : i € H'/?(9Q2"\9Q2), we have a new functional :

Llguw @ Bf, ) = (& C) ) — (B i) /2300 e 12000

— (@, trgsy 0‘>H1/2 (00M30) xH 12 (30 20) + <u div 0'+f> - (w, Tg)Lzm) ’

[2(Q)xL2(Q)
Hybrid mixed formulation : Given f € L2(Q) and &t = trgraq U € H'2(3Q), find (o, u,w, @) € H(div,Q") x
L2(Ql) x L2(Q) x HY2(9QY"\0Q) such that

(Cg, ”)LZ(n) + (u div Z>l2(0)><L2(O) (w T”)Lz(n) — (& trdn@uwz‘am 90)xH12(00Ma0) (L, trdiv@gl/z(an)xgl/z(fm)
(& div U>LZ(0)xL2(O) T <Jf>L2(Q)xL2(o)
— (@, TU)LZ(Q) =0

_/5 —
(i, trgiy g/ﬁlxz\dor: 90) xH1/2(3011\20) =0

for all (&, 1, @, 1) € H(div, Q") x L2(Q") x L2(Q") x H/2(30/\20).

It is easy to prove that the interface variable i represents the displacement on 9();\0Q.

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna




Mimetic basis functions and their dual representations

Mimetic basis functions

Let =1 = ¢y < {1 < --- < {N = 1 be a partitioning of the interval [—1,1]. The associated Lagrange polynomials :

hi(¢), ¢e[-1,1],i=0,1,---,N, satisfying hi(Cj) =i (Kronecker delta).
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Mimetic basis functions and their dual representations

Mimetic basis functions

Let =1 = ¢y < {1 < --- < {N = 1 be a partitioning of the interval [—1,1]. The associated Lagrange polynomials :
hi(¢), ¢e[-1,1],i=0,1,---,N, satisfying hi(Cj) =i (Kronecker delta).
The corresponding edge polynomials9 are

Z dhk

g.
Z dhk ,i=1,2,---,N, satisfying /gj €i(8) = 9ij.
-1

9. Gerritsma, M. Edge functions for spectral element methods. Spectral and High Order Methods for Partial Differential Equations. Springer, (2011) 199-207
Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna




Basis functions and discretization

[ Jelele]
Mimetic basis functions and their dual representations

Mimetic basis functions

Let =1 = ¢y < {1 < --- < {N = 1 be a partitioning of the interval [—1,1]. The associated Lagrange polynomials :

hi(¢), ¢e[-1,1],i=0,1,---,N, satisfying hi(Cj) =i (Kronecker delta).

The corresponding edge polynomials9 are

=2 dig( dhy( &
k k s J
Z Z ,N, satisfying / e(&) = 5,»,/.
k=0 i1
Lagrange polynomials 6 edge polynomials
)
1.0 1
“‘ 4
c/
05 ) G 2
= 5
I 0
0.0 Ko
- -2
-1.0 —0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0
13 3
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discretization

Mimetic basis functions and their dual representations

Mimetic basis functions

Let =1 = ¢y < {1 < --- < {N = 1 be a partitioning of the interval [—1,1]. The associated Lagrange polynomials :
hi(¢), ¢e[-1,1],i=0,1,---,N, satisfying hi(Cj) =i (Kronecker delta).
The corresponding edge polynomials9 are

Z dhk

l:;"
dhk ,i=1,2,--- N, satisfying /gj €i(¢) = 6ij.
E : —1

Finite dimensional spaces spanned by {/;(¢)ej(17),¢;(§)hj(17)} and {e;(¢)e;(n7)} satisfy the De Rham complex. Let
u, f be expanded as

N N
(zm D3 S one@ ) and fy= 3 3 i@ )

i=0j=1 i=1j=0 i=1j=1

If f = div u, then f;, = div u/, and

N N
Z Zfr ei()ei(n) = Y Y (wij — ui—1j +vij — vij—1) €i(§)ej () = div uy,.

i=1j=1 i=1j=1

9. Gerritsma, M. Edge functions for spectral element methods. Spectral and High Order Methods for Partial Differential Equations. Springer, (2011) 199-207

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna MS5-3, 3 July 2018



Basis functions and discretization
[e] Jele]
Mimetic basis functions and their dual representations

Mimetic basis functions

Mz
Mz

N N
22 wijhi(@)e(n),

i=0j=1

=

=

Il
e

vije (é)’ﬁ(?])) ,

I
—
=
Il
=

A”

Tz *,,‘_,_{ T N N
| | | fi=Y Zf
R T i=1j=1
A f f If f = div u, then f), = div ), :
V19 V20 v21 N N N N
us . W € e Ui — U1, +0;i—0;i1)e(C)ei(n).
u‘_.’ PR i u__> 1o _;x > ;];ft,/ 1(6) ,:Z]];] ij i—1j i i 1) 1(‘3) 7(77)
'R«, A"IT 'llx
| | |
’H|_.) o Uy I u-;__» £ Ug
A A A
I Ty |

FIGURE — Reference domain.

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna



Basis functions and discretization
[e] Jele]
Mimetic basis functions and their dual representations

Mimetic basis functions

* e * N N

i i i fo=Y Y fijei(§)ei(n).
Uy 0 Ui . {50} i—1i—1

- fr > fs - fo - i=1j

f f f If f = div u, then f), = div ), :
N N N
=1

i=1j=1 i=1j

\ ? I Collect all equations and write them in vector form, we have
uy . uz s . Uy
a4 [1 = fa U f3 Ao o IEZ'I
A A A f=E"
Iu 3 I/*H v o

13 15 -1 1 0 0 0 0 00 0 0 00 -1 0 0 1 0 0 0 0 0 00
0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 00
0 0 -1 1 0 0 0o 0 0 0 0o 0 o [ 0 0 1 0 0 0 00
0 0 (U] 1 1 0o 0 0 0 0o 0 o0 0 0 1 0 0 1 0 0 0 0
o i E2! o 0 000 -1 1 0 0 0 000 0 0 0 -1 0 0 1 0 00
FIGURE — Reference domain. R
0 0 0 0 o 0 0 0 -1 1 0 0 o0 0 0 0 0 0 -1 0 0 10
0 0 0o 0 o 0o 0 0 -1 1 0 0 0 0 0 0 0 0 -1 0 01
0 0 0o 0 o0 0 0o 0 0 0 11 0 0 0 0 0 0 0 0 1.0 0

E>! is the discrete div operator.

Yi Zhang Delft University of Technology

N
us e, R YN fiei(@)ei(n) = ): » (uij — ui_1j +0ij — vij—1) €(§)ej (7).

co

~coccooo




Mimetic basis functions and their dual representations

Mimetic basis functions

Basis functions and discretization

[e]e] e}

Uy

Yi Zhang

A7

Voo vas 1'24*
) ) \

FIGURE — Curvilinear domain.

Delft University of Technology

N N
w, = ZZ“ ai (&), 2 )i bii(E) |

170] 1 i=1j=0

fu= Z Zfl/] Cij én).

1= '[7
If f = div u, then f;, = div u, :

N N
Z th,/ ¢ij(6, 1) = ): Y (“1/‘,]‘ — Uiy +0j;— Uf,,q) cij(& 1)

i=1j=1 i=1j=1
Collect all equations and write them in vector form, we have

f/ _ TEZ’Iu/,

-1 1 0 0 0 0 000 0 00 -1 0 0 1 0 0 0 0 0 000
0 1 1 0o o 0 o0 0 0 o 0o 0 o 1 o 0 1 0 0 0 0 00 0
00 -11 0 0 000 0 000 0 -1 0 0 1 0 0 0 000
00 00 -1 1 000 0 000 0 0 -1 0 0 1 0 0 000
B o 0 000 -1 1 00 0 000 0 0 0 -1 0 0 1 0 000
00 000 0 -1 1 0 0 000 0 0 0 0 -1 0 0 1 000
0 0 0o 0 o 0 o0 0 -1 1 0o 0 o 0 0 0 0 0 -1 0 0 100
0 0 0 0 0 00 0 -1 1 00 0 0 0 0 0 0 -1 0 010
00 000 0 000 0 -11 0 0 0 0 0 0 0 0 -100°1

E>! is the discrete div operator.

018, Bologna



Basis functions and discretization

[e]e]e] ]

Mimetic basis functions and their dual representations

Mimetic trace basis functions

The trace variable trg;,# can be discretized as

N

N N N
traivtty = ZU?E;(@’), vane;(g)/ Zu‘z'lve;(ﬂ)f Zu?e;(ﬂ)
i=1 i=1 i=1

i=1

Uy

FIGURE — Curvilinear domain.
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Basis functions and discretization

[e]e]e] ]

Mimetic basis functions and their dual representations

Mimetic trace basis functions

The trace variable trg;,# can be discretized as

N

N N N
YU
e M ey traiiy = § Y 08el(@), Yo ofel (@), Lo uel(), Y- uEel(n)
T i=1 i=1 i=1

i=1

Uy

There is a linear operator, IN, such that
up, = Nu/,

where uf, = (—o$,0", —u¥,u$)T and

cocococolcocococoo

cococococococococooo
cococococococococooo
co~ococococococooo
cococolcococococoo
cococococcococococoo
cococococcocococooo
crococococococococoo
cocolccococococoo
cococococcocoococoo
cococococcococococoo
~ocococococococococoo
cocococoocococoooo

cocococococococoo /o
coocococococoo/ oo
coccococococococooo
cococococococococoo
cocococccocoococoo
cococococcococococoo
cococococococococooo
cocococococococococoo
cococococococorooo
cccoccoco~ococoo
cccococor~rocococoo

FIGURE — Curvilinear domain.

N is the discrete trace operator.
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Dual representations

Dual representations

Let scalar functions p, and g, both be expanded in terms of basis functions {e;(& Jei (1) ¥

(Phrqh)]}(n) = PTIM(Z)%

where M(®) is the mass matrix.

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna



Basis functions and discretization
o
Dual representations

Dual representations

Let scalar functions p, and g, both be expanded in terms of basis functions {e;(& Jei (1) ¥

(Phrqh)]}(n) = PTIM(Z)%

where M) is the mass matrix. We can further define the dual basis functions 10 as

1

[e1@er(n), -+ sen(@en(m)] = ler@en(n), -+ en(@en ()] M

10. Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017)
arXiv :1712.09472.

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna




Basis functions and discretization

o
Dual representations

Dual representations

Let scalar functions p, and g, both be expanded in terms of basis functions {e;(& Jei (1) ¥
(P a)120y = P Mg,
where M@ is the mass matrix. We can further define the dual basis functions 1 as

[e1@er(n), -+ sen(@en(m)] = ler@en(n), -+ en(@en ()] M

Lagrange polynomials dual Lagrange polynomials
1.0 1
/
Q 0.5 |
0.0 =
-1.0 —0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0

10. Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017)
arXiv :1712.09472.
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Basis functions and discretization

o
Dual representations

Dual representations

Let scalar functions p, and g, both be expanded in terms of basis functions {e;(& Jei (1) ¥
(P a)120y = P Mg,
where M@ is the mass matrix. We can further define the dual basis functions 1 as

[e1@er(n), -+ sen(@en(m)] = ler@en(n), -+ en(@en ()] M

6 edge polynomials dual edge polynomials
)
1.5
4 10
T 2 @ 05
5
0 0.0
L —0.5
-1.0 —0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0
¢ 1
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Dual representations

Let scalar functions p, and g, both be expanded in terms of basis functions {e;(& Jei (1) ¥

(Phrqh)]}(n) = PTIM(Z)%

0

where M) is the mass matrix. We can further define the dual basis functions 10 as

1

[e1@er(n), -+ sen(@en(m)] = ler@en(n), -+ en(@en ()] M
If we expand f, in terms of the dual basis functions {ei (E)T’]-(r]) }, we can obtain

(Bn @) 112y x12(0) = P 9, where p = M@p,
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o
Dual representations

Dual representations

Let scalar functions p, and g, both be expanded in terms of basis functions {e;(& Jei (1) ¥

(Phrqh)]}(n) = PTIM(Z)%

where M) is the mass matrix. We can further define the dual basis functions 10 as

1

[e1@er(n), -+ sen(@en(m)] = ler@en(n), -+ en(@en ()] M
If we expand f, in terms of the dual basis functions {ei (E)T’]-(r]) }, we can obtain

(Bn @) 112y x12(0) = P 9, where p = M@p,
(Pr ) Lioy <2 () = (MPran) Loy xr2 ) = P In)12(q) -
Riesz Representation Theorem : For every it € V, there exists a unique u € V, such that

~ <ﬁ’v>\7><v = <R”/7’>\7><v = (urv)V/vv € V/
R:ucV — i€ Viscalled Riesz mapping.

10. Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017)
arXiv :1712.09472.
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discretization

Dual representations

Dual representations

Let scalar functions p, and g, both be expanded in terms of basis functions {e;(& Jei (1) ¥

(Phrqh)]}(n) = PTIM(Z)%

0

where M) is the mass matrix. We can further define the dual basis functions 10 as

1

[e1@er(n), -+ sen(@en(m)] = ler@en(n), -+ en(@en ()] M
If we expand f, in terms of the dual basis functions {ei (E)T’]-(r]) }, we can obtain

@)

Pr-and Ly <z () = p'q, where p = MPp,

(Pran) iy <2 () = Mbh @)y <z ) = Pren)iz(q) -
Furthermore, if g, = div v),, and v, is expanded by basis functions {h;(&)e;(y), ei(&)h;(17) }, we have

(Pn, div o)y w12(0) = p'E> 0.
The same idea can be applied to the trace basis functions.

10. Jain, V., Zhang, Y., Palha, A. and Gerritsma, M. Construction and application of algebraic dual polynomial representations for finite element methods. (2017)
arXiv :1712.09472.
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Basis functions and discretization
®000000
Discretization

Discretization : Stress, body force and displacement

2 2
Oy y
13 o
LR R L
0'1 e 0'2 ¢ 0'3
Trx Trx rx
0.1 fl
zy Y
+
1 3 1
Uyz (Tyl' Uyy
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Discretization

®000000

Discretization : Stress, body force and displacement

2 2 4
Oy y Oy
2
-+ fl -+ 2 -->£ *O—yy é
1 x 2 Jx 3 T
O O Oz 1 1 .
Oy y ij
t
1 1
Oyx (721' Tyy
m For stress ¢, &; H(div, ()), we choose
{ojgx oﬂ L [Er@am) {evomm)
h 7 _
ol %y {M@em}  {demo})
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Discretization

Discretization :

discretization

®000000

Stress, body force and displacement

2 2 4
Oy y Oy
2
-4 fl - 2 -->£ *O—yy é
1 x 2 Ja 3 !
O O Oz 1 1 .
Oy y ij
t
Tye | O Ty
m For stress ¢, &; H(div, ()), we choose
o o] @ty {NMemo)
h /3 s N/ N N—1/x\,N+1
ol %y {M@em}  {demo})
m For body force i ; Lz(Qk), we choose

~z

frf] = [{eN@e

Yi Zhang Delft University of Technology

ESMC, 2-6 July 2018, Bologna

MS5-3, 3 July 2018
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discretization
®000000
Discretization

Discretization : Stress, body force and displacement

2 2 4
Ozy y Ozy
3 o 3
-+ fl -+ 2 1, Tyy
0.1 z 27T 0,3
x| xrx xrx
0.1 1 0.3
Y Y Yy
4
1 3 1
U'yz (Tyl' Uyy

m For stress ¢, &; H(div, ()), we choose

{o% UH | [ @ o)

Ty Oy <

m For body force i ; Lz(Qk), we choose
] =

m For displacement u, i ; Lz(ﬂk), we choose

{ .
i) 4 )

ESMC, 2-6 July 2018, Bologna
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Basis functions and discretization
O@00000
Discretization

Discretization : Rotation

1 3 1 1 3 3
SR R R e e e
1 3
Oy Oya

m For rotation w, @; Lz(Qk) which reduces to a scalar w; L2(Q)) in R? , we choose
w = {W@ma}.

It enforces the symmetry of the stress tensor in each element.

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna
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Discretization

Discretization : Rotation

1 3
1 w w 3
Oay o) ) Oay
1 3
Oyz Oy

m For rotation w, @; Lz(Qk) which reduces to a scalar w; L2(Q)) in R? , we choose
w = {W@ma}.

It enforces the symmetry of the stress tensor in each element.

m In multiple element case, the kinematic spurious modes are there. So we have to loose the symmetry
constraint by reduce the order of the polynomial by 1,

w = (W@ )}

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna
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Basis functions and discretization
[e]e] lele]ele]
Discretization : Lagrange multiplier
> > >
2 4 2 4
Oy Oya Oy Oyz
»-—»1 —->2 3 »-—»1 —->2 3 >
Ozx 20 Oza Oxx Oz Oz m For the Lagrange multiplier &, i; ﬂl/ Z(BQk), we choose
1 3 1 3
o o o o e
ye ur yr ur P N N N1 N-—1
el 1 we— (@@ T ),
2 4 2 4 . .
Oya Oya Oyx Oyx corresponding to south, north, west and east boundaries
of each element.
»-—»1 —->2 3 »-—»1 —->2 3—>>
1 3 1 3
Oy Oy Oy Oy
>
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Basis functions and discretization

O00e000
Discretization

Discretization : Lagrange multiplier

A A
; ;
3 3
9 Tyy 9 Tyy
Ao Ty g zy |4 g Ty g Ty 4
2 2
o o
+7yy 4%yy
T T
1 3 ) 3 m For the Lagrange multiplier i, ii; H'/?(30)), we choose
Aloay , Ozy [ 4 ]02y ) Oy 4
5 o — — o~ ——
1% $%m i - {d T d @A maw},
A A
I 0_3 I 0_3
5 vy 5 vy corresponding to south, north, west and east boundaries
a0z Ogy|[a] %z Oz 4
Y , ry . of each element.
2%vy 2%y
1 3 1 3
A |0y Oy | 4|02y . Ozy | 4
4 Tyy 4 Tyy
i i
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Basis functions and

[e]e]e]e] Jele}
Discretization

Discretization

Given f € L*(Q)) and it = trgrq u € H'/2(3Q)), find (¢, u,w, @) € H(div, ") x L2(QM) x L2(Q) x HY2(30/M\00)

such that
(CZ8) 12 () + (W AV E) 123y 1200y — (@ TE) 2y — (B o)z paman) a2 eane0) = (L, trdiv@ﬂl/z(an)xg‘/z(an)
(& div )2 ) x12(0 - <4f >L2 (Q)x12(Q)
- (Q, T )LZ(Q) =0
<1!’ trgive >H1,’2(a()h \0Q) xH 12 (20 a00) =0

for all (&,,@, 1) € H(div, ") x I2(Q") x L2(Q") x H/2(30!\20).

Discrete hybrid mixed formulation is

MO g2 T _NT| (e NZa

E?! 0 0 0 ul _| —f

-t 0 0 0 w 0

—N; 0 0 0 it 0
Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna

MS5-3, 3 July 2018



Basis functions and discretization
[e]e]e]e]e] e}
Discretization

Discretization

Discrete hybrid mixed formulation : u MO : element-wise-block-diagonal ; metric-dependent;

Nia\ = T : element-wise-block-diagonal ; metric-dependent;

MO E2T T —NT] (e

E21 0 0 0 u | _ —f m E21 : element-wise block-diagonal ; metric-free; +1 non-zero
-T7 0 0 0 w 0 entries; super sparse;

—IN; 0 0 0 u 0 m N : metric-free; +1 non-zero entries; even more sparse;

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna



Basis functi a
[e]e]e]e]e] e}
Discretization

Discretization

Discrete hybrid mixed formulation : u MO : element-wise-block-diagonal ; metric-dependent;

™MD ]Ez,lT T 7]N}“ Ngﬁ m T : element-wise-block-diagonal ; metric-dependent ;
E>1 0 0 0
-TT 0 0 0
—IN; 0 0 0

- m E21 : element-wise block-diagonal ; metric-free; +1 non-zero
0 entries; super sparse;

0

ST S

m N : metric-free; +1 non-zero entries; even more sparse;
We can easily eliminate ¢, # and w, and obtain a system for the discrete interface variable i,
Hu =T,

where .
H=-NMD™! [M“) _gT (SIM“)AST)i s] MO 'NT,
F = Fy +Fg,
_ _ -1 _
Fi = N ! {]M(l) T (sm)sT) s} MO N,

— _ -1
Fg = —N;M ST (sMM)7sT) g,

gT — [EZ,]T J[l"], g=(—f" O)T.

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna



Basis functi a
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Discretization

Discretization

Discrete hybrid mixed formulation : u MO : element-wise-block-diagonal ; metric-dependent;

™MD ]Ez,lT T 7]N}“ Ngﬁ m T : element-wise-block-diagonal ; metric-dependent ;
E>1 0 0 0
-TT 0 0 0
—IN; 0 0 0

- m E21 : element-wise block-diagonal ; metric-free; +1 non-zero
0 entries; super sparse;

0

ST S

m N : metric-free; +1 non-zero entries; even more sparse;
We can easily eliminate ¢, # and w, and obtain a system for the discrete interface variable i,

Hu =F,

m Inverting M()) and SM() “lsT s easy (in parallel) because they are element-wise-block-diagonal.

m Solving for # is cheap (smaller system size and condition number).

m Remaining local problems for ¢, u and w are trivial because (smM® 7IST)’1 is already computed.

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna



Numerical results and

[ Jelele]

Manufactured solution

Manufactured solution

Given a domain Q = [0,1]%, E = 1, v = 0.3 and exact solutions :

u = [sin(27tx) cos(27ty), cos(7tx)sin(my)], w = —0.57sin(7x) sin(7ry) + 7 sin(27x) sin(27ty),
Oy = O—Eivz) (277 cos(27tx) cos(27ty) + vt cos(rtx) cos(mty)], oyx = % [—0.57t sin(7rx) sin(7ty) — 7tsin(27tx) sin(27ty)],
Oy = 4o [—0.57sin(7x) sin(rry) — 7 sin(271x) sin(27y)], oy = O—Eivz) [27tv cos(27x) cos(27ty) + 7 cos(7tx) cos(mty)],
fx = (17}57]/2) [74752 sin(27tx) cos(27ty) — vre? sin(7rx) cos(rfy)] + % [70.5712 sin(7tx) cos(my) — 272 sin(27tx) cos(27ry)] ,
fy= Hiv [7057‘[2 cos(7tx) sin(7y) — 272 cos(27tx) sin(27‘ry)} + ﬁ [747‘[21/ cos(27tx) sin(27y) — 72 cos(7tx) sin(ny)] .

MS5-3, 3 July 2018

ESMC, 2-6 July 2018, Bologna

Yi Zhang Delft University of Technology



Numerical results and conclusions

[ Jelele]

Manufactured solution

Manufactured solution

Given a domain Q = [0,1]%, E = 1, v = 0.3 and exact solutions :

u = [sin(27tx) cos(27ty), cos(7tx)sin(my)], w = —0.57sin(7x) sin(7ry) + 7 sin(27x) sin(27ty),
Oy = O—Eivz) (277 cos(27tx) cos(27ty) + vt cos(rtx) cos(mty)], oyx = % [—0.57t sin(7rx) sin(7ty) — 7tsin(27tx) sin(27ty)],
Oy = % [—0.57sin(7x) sin(rry) — 7 sin(271x) sin(27y)], oy = O—Eivz) [27tv cos(27x) cos(27ty) + 7 cos(7tx) cos(mty)],
fx = (17}57]/2) [74752 sin(27tx) cos(27ty) — vre? sin(7rx) cos(rfy)] + % [70.5712 sin(7tx) cos(my) — 272 sin(27tx) cos(27ry)] ,
fy= Hiv [7057‘[2 cos(7tx) sin(7y) — 272 cos(27tx) sin(27‘ry)} + ﬁ [747‘[21/ cos(27tx) sin(27y) — 72 cos(7tx) sin(ny)] .

We solve the discrete hybrid mixed formulation in
Q with

f= fexact inQ, J
il = trgrad Uexact on 9Q), h

imposed in both orthogonal and heavily distorted

meshes.
Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna
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Numerical results and conclusions

[e] Jele]
Manufactured solution

Manufactured solution : singular element
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Manufactured solution
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Manufactured solution

Manufactured solution
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Numerical results and conclusions
[ JeJele]e]
Cracks

Crack : Opening

B The geometry is [—1,1]? with a infinite crack at

x=[-1.0], y=0,
whose right side is mounted on a wall.

B Material properties : E = 100, v = 0.3.

B Opening shear stress :

a,‘f; =1, Uf;’“'“ =-1
FIGURE — Opening crack.

B Uniformly ph-refinements.

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna




Numerical results and conclusions

(o] Jele]e]
Cracks

Crack : In-plane shear

B The geometry is [—1,1]? with a infinite crack at

x=[-1.0], y=0,
whose right side is mounted on a wall.
B Material properties : E = 100, v = 0.3.

B In plane shear normal stress :

(EEEEERRRE

o =1, gdown — _q,
FIGURE — In plane shear crack.
B Uniformly ph-refinements.

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna July 2018
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Cracks : Complementary strain energy

Numerical results and conclusions

[e]e]ele] ]

Yi Zhang Delft University of Technology

TaBLE — Opening.

number of elements

N 16 64 144 256 400 576
2 0.183928  0.180595  0.179565 0.179062 0.178764  0.178566
4 0.180120  0.178812  0.178399  0.178196  0.178075  0.177994
6 0.178970  0.178264 0.178038  0.177926  0.177860  0.177815
8 0.178468  0.178022 0.177878  0.177807 0.177764  0.177736
10 0178202 0.177893  0.177792 0.177743  0.177713  0.177693
12 0178043 0.177815 0.177741 0.177704 0.177682  0.177667
14 0177940 0.177765 0.177708 0.177679  0.177662  0.177651
TaBLE — In plane shear.
number of elements
N 16 64 144 256 400 576
2 0.0180946  0.0180009  0.0179741  0.0179613  0.0179538  0.0179488
4 0.0179924 0.0179557  0.0179450  0.0179398  0.0179368  0.0179348
6 0.0179619  0.0179421  0.0179362  0.0179333  0.0179317  0.0179306
8 0.0179486  0.0179361  0.0179323  0.0179305  0.0179294  0.0179287
10 0.0179415 0.0179328  0.0179302  0.0179289  0.0179282  0.0179277
12 0.0179373  0.0179309  0.0179289  0.0179280  0.0179274  0.0179270
14 0.0179346  0.0179296  0.0179281  0.0179274  0.0179269  0.0179266

ESMC, 2-6 July 2018, Bologna
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Numerical results and conclusions
L]
Conclusions

Conclusions

We have proposed a high order spectral element method for linear elasticity :

m The method uses integral values as dof’s.

m The method is hybrid. So it is very easy to parallelize. And imposing boundary conditions is easy; we have
dof’s on boundary for both Dirichlet and Neumann boundary conditions.

m The method is mimetic; the divergence operator is preserved at the discrete level.

m The method uses dual polynomials. As a result, most blocks are metric-free, extremely sparse and low order
finite-difference(volume)-like (containing non-zero entries of —1 and 1 only).

m It can be efficiently solved by solving a reduced system for the interface variable.
These features make the method a preferable one.

Thanks a lot. Questions ?

Yi Zhang Delft University of Technology ESMC, 2-6 July 2018, Bologna
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