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You probably have used the scipy.quad module for integration. However, its efficiency is low
and it is like a black box; usually no one carefully checks the source code of scipy. Thus, you’d
better know how to do integration by yourself such that you can freely use it in your programs. You
will see that it is very important in the coming assignments. And, in this assignment, lets find out
how it works togerther.

1 Gauss quadrature in [−1, 1]

On a segment [−1, 1], the most widely used numerical integration is the Gauss(-Legendre)
quadrature. Given a positive integer Nq (called the quadrature degree), one can compute the Gauss
sample nodes Gn and Gauss weights Gw,

Gn =
{
λ1, λ2, · · · , λNq

}
,

Gw =
{
w1, w2, · · · , wNq

}
,

where −1 < λ1 < λ2 < · · · < λNq
< 1 and wi ∈ R, i ∈ {1, 2, · · · , Nq}. Note that these λi are not a

partition of [−1, 1]. You can use, for example,

numpy.polynomial.legendre.leggauss

function to compute these nodes and weights.
Given a function f(λ) over [−1, 1], we can compute its integration over [−1, 1] by

(1)

∫ 1

−1

f(λ)dλ ≈
Nq∑
i=1

wif(λi).

1https://mathischeap.com/contents/teaching/advanced_numerical_methods/mimetic_spectral_element_method/main
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This is saying we just need to 1) compute the values of f(λ) at the Gauss sample nodes, 2) multiply
the values with the Gauss weights, and 3) compute the summation. If fp(λ) is a polynomial of
degree 2N − 1 or less, this numerical integration will be exact, i.e.,∫ 1

−1

fp(λ)dλ =

Nq∑
i=1

wifp(λi).

We can see that the Gauss quadrature (1) is very handy; it computes integral using a compu-
tation of muliplication and summation which are very easy for computers. What is better, it can
be exact for polynomials and our mimetic spectral element spaces are spaces of polynomials in this
series of assignments.

2 Gauss quadrature in Ωr = [−1, 1]2

In one dimension, the Gauss quadrature (1) is straight-forward. And it is simple to extend it
to the reference element Ωr = [−1, 1]2 in two dimensions.

In Ωr, given a function f(ξ, η), let {ξ1, ξ2, · · · , ξN} and {η1, η2, · · · , ηN} be the Gauss sample
nodes along two axes. The Gauss quadrature is∫

Ωr

f(ξ, η)dΩ =

∫ 1

−1

∫ 1

−1

f(ξ, η)dηdξ ≈
Nq∑
i=1

Nq∑
j=1

wiwjf(ξi, ηj).

We see that it is simply like applying the one-dimensional Gauss quadrature to the two axes.

3 Gauss quadrature in an arbitrary element Ωn ∈ R2

Through the last assignment, we already know that the real problem usually is not defined in
Ωr. Thus we need to know how to do the numerical integration in an arbitrary element Ωn.

Suppose a C1 diffeomorphism Φn maps Ωr into Ωn, i.e.,

Φn : Ωr → Ωn.

This mapping maps the Gauss sample nodes in Ωr to the Gauss sample nodes in Ωn as[
xi

yj

]
= Φn(ξi, ηj), i, j ∈ {1, 2, · · · , Nq} .

Now, given a function f(x, y) in Ωn, we can compute it integral by

(2)

∫
Ωn

f(x, y)dΩ ≈
Nq∑
i=1

Nq∑
j=1

wiwjf(xi, yj)Jn(xi, yi),

where Jn is the Jacobian of mapping Φn.

4 Gauss quadrature in an orthogonal rectangle

Samilar to Assignment #2, we only consider orthogonal rectangles here. So, we assume Ωn to
be an orthognal rectangle

Ωn := [x0, x1]× [y0, y1].

2
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And we use dx = x1 − x0 and dy = y1 − y0. From Assignment #2, we know that for such an
orthogonal rectangle, its Jacobian is a constant, i.e.,

Jn =
dxdy
4

.

So, in (2), the contribution of Jn(xi, yi) becomes no longer coordinates-related; (2) can be written
as

(3)

∫
Ωn

f(x, y)dΩ ≈ dxdy
4

Nq∑
i=1

Nq∑
j=1

wiwjf(xi, yj).

This makes the numerical integral more or less as simple as that in the reference element.

Assignment 3.1.0: Numerical integral in an orthogonal rectangle

You need to program a function to compute the numerical integral in an orthogonal
rectangle. You can apply your function to, for example,

f(x, y) = sin(2πx) cos(2πy) + 1,

and compute its integral over a rectangle [1, 2] × [2, 3]. Compare your results for
different quadrature degree Nq to the analytical result.

5 Numerical integration for mimetic spectral element spaces

Consider the mimetic spectral element space C(Ωn). If αh, βh ∈ C(Ωn), we know they can be
expressed as

(4)

αh =

j=N∑
i=0

N∑
j=0

aijll
ij
n (x, y),

βh =

j=N∑
i=0

N∑
j=0

bijll
ij
n (x, y).

Now, we try to use the numerical integral to compute the inner product between αh and βh,
⟨αh, βh⟩Ωn

. Using (4), the inner product can be written explicitly as

(5) ⟨αh, βh⟩Ωn
=

〈
j=N∑
i=0

N∑
j=0

aijll
ij
n (x, y),

j=N∑
i=0

N∑
j=0

bijll
ij
n (x, y)

〉
Ωn

.

If we use a one-dimensional indexing (also called a local labeling) to label the expansion coefficients
and basis functions as

ak = aj×(N+1)+i+1 = aij ,

bk = bj×(N+1)+i+1 = bij ,

llk(x, y) = llj×(N+1)+i+1(x, y) = llij(x, y).

3
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The inner product (5) can be further expressed as

(6)

⟨αh, βh⟩Ωn
=

〈
j=N∑
i=0

N∑
j=0

aijll
ij
n (x, y),

j=N∑
i=0

N∑
j=0

bijll
ij
n (x, y)

〉
Ωn

.

=
[
a0 a1 · · · aK

]

⟨ll1, ll1⟩Ωn

⟨ll1, ll2⟩Ωn
· · ·

〈
ll1, llK

〉
Ωn

⟨ll2, ll1⟩Ωn
⟨ll2, ll2⟩Ωn

· · ·
〈
ll2, llK

〉
Ωn

...
...

. . .
...〈

llK , ll1
〉
Ωn

〈
llK , ll1

〉
Ωn

· · ·
〈
llKllK

〉
Ωn



b0
b1
· · ·
bK

 ,

where K = (N + 1)2 and we have omitted (x, y) (for example, ll1 means ll1(x, y)). It is clear
that the inner product becomes a matrix multiplication of three inputs, a 1× (N +1)2 matrix (row
vector), an (N +1)2 × (N +1)2 square matrix, an (N +1)2 × 1 matrix (colume vector). The output
is a 1× 1 matrix, i.e., a real number. With (6), we can see that, if we have pre-computed

MC =


⟨ll1, ll1⟩Ωn

⟨ll1, ll2⟩Ωn
· · ·

〈
ll1, llK

〉
Ωn

⟨ll2, ll1⟩Ωn
⟨ll2, ll2⟩Ωn

· · ·
〈
ll2, llK

〉
Ωn

...
...

. . .
...〈

llK , ll1
〉
Ωn

〈
llK , ll2

〉
Ωn

· · ·
〈
llK , llK

〉
Ωn

 ,

we can quickly compute the L2-inner product as

⟨αh, βh⟩Ωn
= α⃗TMC β⃗,

where α⃗ and β⃗ are colume vectors of expansion coefficients of αh and βh, respectively. And we call
MC the mass matrix of C(Ωn). Obviously, MG, the mass matrix of G(Ωn) is same to MC . Clearly
MC is symmetric, i.e., MT

C = MC .
Similarly, we can easily derive the mass matrix of S(Ωn),

MS =


⟨ee1, ee1⟩Ωn

⟨ee1, ee2⟩Ωn
· · ·

〈
ee1, eeL

〉
Ωn

⟨ee2, ee1⟩Ωn
⟨ee2, ee2⟩Ωn

· · ·
〈
ee2, eeL

〉
Ωn

...
...

. . .
...〈

eeL, ee1
〉
Ωn

〈
eeL, ee2

〉
Ωn

· · ·
〈
eeL, eeL

〉
Ωn

 ,

where we have used a local labeling l = (j − 1)×N + i, and L = N2.
Now, we consider the mimetic spectral element space D(Ωn). If uh,ρh ∈ D(Ωn), they can be

expressed as

(7)

uh =

[∑j=N
i=0

∑N
j=1 uijle

ij
n (x, y)∑j=N

i=1

∑N
j=0 vijel

ij
n (x, y)

]
,

ρh =

[∑j=N
i=0

∑N
j=1 pijle

ij
n (x, y)∑j=N

i=1

∑N
j=0 qijel

ij
n (x, y)

]
.

The inner product between them can be written explicitly as

(8)
⟨uh,ρh⟩Ωn

=

〈[∑j=N
i=0

∑N
j=1 uijle

ij
n (x, y)∑j=N

i=1

∑N
j=0 vijel

ij
n (x, y)

]
,

[∑j=N
i=0

∑N
j=1 pijle

ij
n (x, y)∑j=N

i=1

∑N
j=0 qijel

ij
n (x, y)

]〉
Ωn

= u⃗TMDρ⃗.
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where

u⃗ =



u1
u2
...

uM
v1
v2
...

vM


, ρ⃗ =



p1
p2
...

pM
q1
q2
...

qM


,

and

MD =

[
Mx

D 0
0 My

D

]
with

Mx
D =


⟨le1, le1⟩Ωn

⟨le1, le2⟩Ωn
· · ·

〈
le1, leM

〉
Ωn

⟨le2, le1⟩Ωn
⟨le2, le2⟩Ωn

· · ·
〈
le2, leM

〉
Ωn

...
...

. . .
...〈

leM , le1
〉
Ωn

〈
leM , ee2

〉
Ωn

· · ·
〈
leM , leM

〉
Ωn

 ,

Mx
D =


⟨el1, el1⟩Ωn

⟨el1, el2⟩Ωn
· · ·

〈
el1, elM

〉
Ωn

⟨el2, el1⟩Ωn
⟨el2, el2⟩Ωn

· · ·
〈
el2, elM

〉
Ωn

...
...

. . .
...〈

elM , el1
〉
Ωn

〈
elM , el2

〉
Ωn

· · ·
〈
elM , elM

〉
Ωn

 .

Note that we have locally labeled the first component (corresponding to basis functions leij) as

m = (j − 1)× (N + 1) + i+ 1

and locally labeled the second component (corresponding to basis functions elij) as

m = j ×N + i.

Thus, for both components, the total number of basis functions (and expansion coefficients) is
M = N × (N + 1).

Similarly, you should be able to derive the mass matrix of R(Ωn).
It is easy to see, just as MC , all mass matrices are symmetric.

6 Compute the mass matrices

As we have seen, each entry of a mass matrix is just a inner product between two basis functions.
In other words, it is an integral. So, we can apply the numerical integration to compute it. For
example,

〈
ll1, ll2

〉
Ωn

=

∫
Ωn

ll1(x, y)ll2(x, y)dΩ ≈ dxdy
4

Nq∑
i=1

Nq∑
j=1

wiwjll
1(xi, yj)ll

2(xi, yj).

Similarly, you can compute entris of all mass matrices. And remember that, since all mass matrices
are symmetric, we only need to compute the upper (or lower) triangular parts of the mass matrices.

Assignment 3.2.0: Compute mass matrices

You need to program four functions to compute the four different mass matrices.

5


	Gauss quadrature in [-1, 1]
	Gauss quadrature in r = [-1, 1]2
	Gauss quadrature in an arbitrary element nR2
	Gauss quadrature in an orthogonal rectangle
	Numerical integration for mimetic spectral element spaces
	Compute the mass matrices

