Mimetic, dual and hybrid

Numerical method

Discretization

Conclusions O

A hybrid mimetic spectral element method for the vorticity-velocity-pressure formulation of the Stokes equations

Yi Zhang¹, Varun Jain¹, Artur Palha¹, and Marc Gerritsma^{1*}

¹**Delft University of Technology** {y.zhang-14, v.jain, a.palha, m.i.gerritsma}@tudelft.nl

dynamics

In MS21: Structure-preserving discretization methods, 02 Oct 2019

Yi Zhang @ Delft University of Technology

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	Conclusions
000				

Mimetic

Mimetic spectral element method (MSEM)^{1, 2, 3} is arbitrary order structure-preserving mixed finite element methods.

It is structure-preserving because they use finite dimensional function spaces that obey the de Rham complex :

It is computationally costly. (i) : the large amount of dofs, (ii) : the low sparsity.

We are going to reduce the computation cost of MSEM from this two aspects.

^{1.} Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.

^{2.} Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics, (2013) 240 : 284-309.

^{3.} Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.

Mimetic, dual and hybrid	Numerical method	Numerical experiments	
000			

Hybrid finite element methods

*Hybrid finite element methods*⁴⁵ are those methods that first allow the discontinuity across the inter-element interface then re-enforce (weakly or strongly) the continuity by introducing a Lagrange multiplier between elements.

Similar idea has also be used in, e.g., mortar methods and finite element tearing and interconnecting (FETI) methods, and more.

^{4.} T. H. Pian, C.-C. Wu, Hybrid and incompatible finite element methods, Chapman and Hall/CRC, 2005.

^{5.} F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, Vol. 15, Springer Science & Business Media, 2012.

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	Conclusions
000				
D 11 · C ·				

Dual basis functions

Using dual basis functions 67 eliminates some metric-dependent matrices from the discrete system.

 $(\phi, \varphi) = \underline{\phi}^{\mathsf{T}} \mathbb{M} \underline{\phi}$ $(\phi, \widetilde{\varphi}) = \underline{\phi}^{\mathsf{T}} \underline{\widetilde{\phi}}$

where $\tilde{\varphi}$ represent it is expanded with dual basis functions.

^{6.} P. Wozny, Construction of dual bases, Journal of Computational and Applied Mathematics 245 (2013) 75-85

^{7.} P. Wozny, Construction of dual b-spline functions, Journal of Computational and Applied Mathematics 260 (2014) 301-311

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	Conclusions
	0000000			

Mimetic basis functions

Let $-1 \le \xi_0 < \xi_1 < \cdots < \xi_N \le 1$. The well-known Lagrange polynomials are expressed by $l_i(\xi)$:

$$l_i(\xi) = \prod_{j=0, j \neq i}^N \frac{\xi - \xi_j}{\xi_i - \xi_j}, \quad i \in \{0, 1, 2, \cdots, N\}, \text{ satisfying, } l_i(\xi) = \delta_{i,j}.$$

The corresponding **edge polynomials**⁸ are

8. Gerritsma, M. Edge functions for spectral element methods. Spectral and High Order Methods for Partial Differential Equations. Springer, (2011) 199-207

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	Conclusions O
Mimetic basis f	unctions			
Let $L^N := \operatorname{span}(l)$;), and $\mathbf{E}^{(N-1)} := \operatorname{span}(e_i)$. If	$p_h \in \mathtt{L}^N$, $q_h \in \mathtt{E}^{(N-1)}$, and	$q_h = \mathrm{d} p_h$	
	$p_h = \sum_{i=0}^N$	$\mathbf{p}_i l_i(\xi)$ and $q_h = \sum_{i=1}^N \mathbf{q}_i e_i$	$_{i}(\xi)$	
Let $\underline{p} = \{ p_0 p_1$	$\cdots \mathbf{p}_N\}^T, \underline{q} = \{\mathbf{q}_1 \mathbf{c}$	$\mathbf{q}_2 \cdots \mathbf{q}_N \}^{T}$. We have q	$\underline{n} = \mathbb{E}\underline{p},$	
	$\mathbb{E} = \begin{cases} -0\\0\\\vdots\\0 \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0\\0\\0\\\vdots\\1 \end{array} $	

We have constructed such a discrete de Rham complex in $\mathbb R$:

$$\begin{array}{cccc} \underline{\mathbf{L}}^N & \leftrightarrow & \mathbf{L}^N & \subset & H^1(I) \\ \downarrow \mathbb{E} & & \downarrow \mathbf{d} & & \downarrow \mathbf{d}. \\ \mathbf{E}^{(N-1)} & \leftrightarrow & \mathbf{E}^{(N-1)} & \subset & L^2(I) \end{array}$$

Mimetic, dual and hybrid	Numerical method	Numerical experiments	
	0000000		

Mimetic basis functions

In \mathbb{R}^3 , we define spaces

$$\begin{split} \mathscr{N} &:= \mathsf{L}^{N} \otimes \mathsf{L}^{N} \otimes \mathsf{L}^{N}, \\ \mathscr{E} &:= \mathsf{E}^{(N-1)} \otimes \mathsf{L}^{N} \otimes \mathsf{L}^{N} \ \times \ \mathsf{L}^{N} \otimes \mathsf{E}^{(N-1)} \otimes \mathsf{L}^{N} \ \times \ \mathsf{L}^{N} \otimes \mathsf{L}^{N} \otimes \mathsf{E}^{(N-1)}, \\ \mathscr{S} &:= \mathsf{L}^{N} \otimes \mathsf{E}^{(N-1)} \otimes \mathsf{E}^{(N-1)} \ \times \ \mathsf{E}^{(N-1)} \otimes \mathsf{L}^{N} \otimes \mathsf{E}^{(N-1)} \ \times \ \mathsf{E}^{(N-1)} \otimes \mathsf{E}^{(N-1)} \otimes \mathsf{L}^{N}, \\ \mathscr{V} &:= \mathsf{E}^{(N-1)} \otimes \mathsf{E}^{(N-1)} \otimes \mathsf{E}^{(N-1)}, \end{split}$$

where notations \mathcal{N} , \mathcal{E} , \mathcal{S} , and \mathcal{V} stand for *nodes*, *edges*, *surfaces*, and *volumes* because the degrees of freedom are associated with nodes, edges, faces and volumes, due to the Kronecker delta properties of the nodal and edge functions.

$\underline{\mathcal{N}}$	\leftrightarrow	\mathcal{N}	\subset	$H^1(\Omega_{ m ref})$
$\downarrow \mathbb{E}_{g}$	rad	↓ gra	nd	\downarrow grad
E	\leftrightarrow	${\mathscr E}$	\subset	$H(\operatorname{curl}; \Omega_{\operatorname{ref}})$
$\downarrow \mathbb{E}_{c}$	url	↓ cu	rl	\downarrow curl .
S	\leftrightarrow	S	\subset	$H(\operatorname{div}; \Omega_{\operatorname{ref}})$
$\downarrow \mathbb{E}_d$	liv	↓ di	v	↓ div
V	\leftrightarrow	V	\subset	$L^2(\Omega_{\rm ref})$

Mimetic, dual and hybrid	Numerical method		Numerical experiments	
000	0000000	0000000	00000000000	0

Mimetic basis functions

We consider the discrete vector valued function α^h in \mathscr{S} . The trace of α^h on the face, for example, $(\xi, \eta, \varsigma) \in \Gamma_{\xi^-} = -1 \times [-1, 1] \times [-1, 1]$ is

$$\operatorname{tr}_{\xi^{-}} \boldsymbol{\alpha}^{h} = \begin{cases} \alpha^{h}_{\xi}(-1,\eta,\varsigma) \\ \alpha^{h}_{\eta}(-1,\eta,\varsigma) \\ \alpha^{h}_{\xi}(-1,\eta,\varsigma) \end{cases} \cdot \begin{cases} -1 \\ 0 \\ 0 \end{cases} = -\sum_{i=0}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \mathbf{a}^{\xi}_{i,j,k} l_{i}(-1) e_{j}(\eta) e_{k}(\varsigma) = \sum_{j=1}^{N} \sum_{k=1}^{N} \mathbf{a}^{\xi^{-}}_{j,k} e_{j}(\eta) e_{k}(\varsigma).$$

The polynomials $e_j(\eta)e_k(\varsigma)$ then span a trace space on Γ_{ξ^-} . We denote this trace space by S_{ξ^-} and there is a linear operator \mathbb{N}_{ξ^-} which maps $\underline{\alpha}$ into $\underline{\alpha}_{\xi^-}$:

$$\underline{\alpha}_{\overline{\zeta}^-} = \mathbb{N}_{\overline{\zeta}^-} \underline{\alpha}.$$

For example, if N = 2, we can have

$$\mathbb{N}_{\xi^-} = \begin{cases} -1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & -1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & -1 & 0 & 0 & \cdots \\ 0 & 0 & 0 & -1 & 0 & \cdots \end{pmatrix}$$

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	Conclusions
	00000000			

Dual representations

We consider the primal polynomial space \mathscr{V} , and let $\varphi^h, \varphi^h \in \mathscr{V}$. The L^2 -inner product between φ^h and φ^h is

$$\left(arphi^{h}, \phi^{h}
ight)_{\Omega_{\mathrm{ref}}} = \underline{arphi}^{\mathsf{T}} \mathbb{M} \, \mathscr{V} \, \underline{\phi}_{h}$$

The dual polynomials can then be defined as

$$\left\{\cdots,\widetilde{eee}_{i,j,k}(\xi,\eta,\varsigma),\cdots\right\}^{\mathsf{T}}:=\mathbb{M}_{\mathscr{V}}^{-1}\left\{\cdots,e_{i}(\xi)e_{j}(\eta)e_{k}(\varsigma),\cdots\right\}^{\mathsf{T}}.$$

These dual polynomials form another basis of the space \mathscr{V} . An element, ϕ^h , in \mathscr{V} has a unique dual representation, denoted by $\tilde{\phi}^h$, whose degrees of freedom are

$$\underline{\check{p}} = \mathbb{M} \mathscr{V} \underline{\phi}.$$

Now, the $L^2\text{-inner}$ product between φ^h and $\widetilde{\phi}^h$ is

$$\left(\varphi^{h},\widetilde{\varphi}^{h}\right)_{\Omega_{\mathrm{ref}}}=\underline{\varphi}^{\mathsf{T}}\underline{\widetilde{\phi}}$$

Mimetic, dual and hybrid	Numerical method	Numerical experiments	
	00000000		

Dual representations

I If $\beta^h = \operatorname{div} \alpha^h \in \mathscr{V}$ and $\widetilde{\phi}^h \in \mathscr{V}$, we have

$$\left(\widetilde{\phi}^{h},\beta^{h}\right)_{\Omega_{\mathrm{ref}}}=\left(\widetilde{\phi}^{h},\mathrm{div}\boldsymbol{\alpha}^{h}\right)_{\Omega_{\mathrm{ref}}}=\underline{\widetilde{\phi}}^{\mathrm{T}}\mathbb{E}_{\mathrm{div}}\underline{\boldsymbol{\alpha}}.$$
(1)

2 If $\boldsymbol{\alpha}^h \in \mathscr{S}$ and $\widetilde{\gamma} \in \mathcal{S}_{\xi^-}$, we have

$$\left\langle \widetilde{\gamma}, \operatorname{tr}_{\xi^{-}} \boldsymbol{\alpha}^{h} \right\rangle_{\Gamma_{\xi^{-}}} = \underline{\widetilde{\gamma}}^{\mathsf{T}} \mathbb{N}_{\xi^{-}} \underline{\boldsymbol{\alpha}}.$$
⁽²⁾

I A integration by parts is given by

$$\int_{\Omega} \boldsymbol{\alpha} \cdot \operatorname{grad} \boldsymbol{\phi} \mathrm{d} \Omega = \int_{\partial \Omega} \widehat{\boldsymbol{\phi}} \boldsymbol{\alpha} \cdot \boldsymbol{n} \mathrm{d} \Gamma - \int_{\Omega} \boldsymbol{\phi} \operatorname{div} \boldsymbol{\alpha} \mathrm{d} \Omega.$$

If $a^h \in \mathscr{S}$ and $\widetilde{\phi}^h \in \mathscr{V}$, the discrete integration by parts is written as

$$\left(\operatorname{grad}\widetilde{\boldsymbol{\phi}}^{h},\boldsymbol{\alpha}^{h}\right)_{\Omega_{\operatorname{ref}}} = \left\langle \widehat{\boldsymbol{\phi}}^{h},\operatorname{tr}\boldsymbol{\alpha}^{h}\right\rangle_{\partial\Omega_{\operatorname{ref}}} - \left(\widetilde{\boldsymbol{\phi}}^{h},\operatorname{div}\boldsymbol{\alpha}^{h}\right)_{\Omega_{\operatorname{ref}}}.$$
(3)

If $\tilde{\vartheta}^h := \nabla \tilde{\varphi}^h$, with (1) and (2), we know

$$\underline{\widetilde{\theta}} = \mathbb{N}_{\mathcal{S}}^{\mathsf{T}} \underline{\widehat{\phi}} - \mathbb{E}_{\mathrm{div}}^{\mathsf{T}} \underline{\widetilde{\phi}}, \tag{4}$$

where $\mathbb{N}_{\mathcal{S}}$ can be obtained by assembling the trace matrices.

Yi Zhang @ Delft University of Technology

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	Conclusions
	00000000			

Transformation

Let a \mathcal{C}^1 diffeomorphism, $\Phi_m : \Omega_{\text{ref}} \to \Omega_m$, and use \mathscr{N}_m , \mathscr{E}_m , \mathscr{S}_m , and \mathscr{V}_m represent the corresponding spaces in Ω_m .

1 The transformation between $\psi^h(\xi, \eta, \varsigma) \in \mathscr{N}$ and $\psi^h_m(x, y, z) \in \mathscr{N}_m$ is given by

$$\psi_m^h(x,y,z) = \left(\psi^h \circ \Phi_m^{-1}\right)(x,y,z), \quad \psi^h(\xi,\eta,\varsigma) = \left(\psi_m^h \circ \Phi_m\right)(\xi,\eta,\varsigma).$$

Z The transformation between $\varphi^h(\xi, \eta, \varsigma) \in \mathscr{E}$ and $\varphi^h_m(x, y, z) \in \mathscr{E}_m$ is given by

$$\boldsymbol{\varphi}_{m}^{h}(x,y,z) = \left(\mathcal{J}^{\mathsf{T}}\right)^{-1} \left(\boldsymbol{\varphi}^{h} \circ \Phi_{m}^{-1}\right)(x,y,z), \quad \boldsymbol{\varphi}^{h}(\xi,\eta,\varsigma) = \mathcal{J}^{\mathsf{T}} \left(\boldsymbol{\varphi}_{m}^{h} \circ \Phi_{m}\right)(\xi,\eta,\varsigma).$$

u The transformation between $\alpha^h(\xi, \eta, \varsigma) \in \mathscr{S}$ and $\alpha^h_m(x, y, z) \in \mathscr{S}_m$ is given by

$$\boldsymbol{\alpha}_{m}^{h}(x,y,z) = \frac{\mathcal{J}}{\det \mathcal{J}} \left(\boldsymbol{\alpha}^{h} \circ \Phi_{m}^{-1} \right)(x,y,z), \quad \boldsymbol{\alpha}^{h}(\xi,\eta,\varsigma) = \frac{\mathcal{J}^{-1}}{\det \mathcal{J}} \left(\boldsymbol{\alpha}_{m}^{h} \circ \Phi_{m} \right)(\xi,\eta,\varsigma).$$

I The transformation between $\beta^h(\xi, \eta, \varsigma) \in \mathscr{V}$ and $\beta^h_m(x, y, z) \in \mathscr{V}_m$ is given by

$$\beta^h_m(x,y,z) = \frac{1}{\det \mathcal{J}} \left(\beta^h \circ \Phi_m^{-1}\right)(x,y,z), \quad \beta^h(\xi,\eta,\varsigma) = \det \mathcal{J} \left(\beta^h_m \circ \Phi_m\right)(\xi,\eta,\varsigma).$$

Yi Zhang @ Delft University of Technology

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	Conclusions
	0000000			

Transformation

Let a \mathcal{C}^1 diffeomorphism, $\Phi_m : \Omega_{\text{ref}} \to \Omega_m$, and use \mathscr{N}_m , \mathscr{E}_m , \mathscr{S}_m , and \mathscr{V}_m represent the corresponding spaces in Ω_m .

$\underline{\mathcal{N}}_m$	\leftrightarrow	\mathcal{N}_m	\subset	$H^1(\Omega_m)$
$\downarrow \mathbb{E}_{gra}$	nd	\downarrow gra	ad	$\downarrow \operatorname{grad}$
$\underline{\mathscr{E}}_m$	\leftrightarrow	\mathscr{E}_m	\subset	$H(\operatorname{curl};\Omega_m)$
$\downarrow \mathbb{E}_{cut}$	rl	↓ cui	rl	$\downarrow { m curl}$.
$\underline{\mathscr{S}}_m$	\leftrightarrow	\mathscr{S}_m	\subset	$H(\operatorname{div};\Omega_m)$
$\downarrow \mathbb{E}_{div}$	7	↓ div	v	$\downarrow div$
$\underline{\mathscr{V}}_m$	\leftrightarrow	\mathscr{V}_m	\subset	$L^2(\Omega_m)$

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	Conclusions
		0000000		

Stokes Velocity-Vorticity-Pressure formulation

The Stokes equations in the Velocity-Vorticity-Pressure formulation is given as

 $\begin{cases} \boldsymbol{\omega} - \nabla \times \boldsymbol{u} = \boldsymbol{0} \\ \nabla \times \boldsymbol{\omega} + \nabla \boldsymbol{p} = \boldsymbol{f} \\ \nabla \cdot \boldsymbol{u} = \boldsymbol{0} \end{cases}$

Given a bounded domain Ω in \mathbb{R}^3 with boundaries $\partial \Omega = \Gamma_p \cup \Gamma_{u \cdot n} = \Gamma_{u \times n} \cup \Gamma_{\omega}$ where $\Gamma_p \cap \Gamma_{u \cdot n} = \emptyset$, $\Gamma_{u \times n} \cap \Gamma_{\omega} = \emptyset$, and given \hat{p} on $\Gamma_{p, \hat{u}} \cdot n$ on $\Gamma_{u \cdot n, \hat{u}} \times n$ on $\Gamma_{u \times n}$, and $\hat{\omega}$ on Γ_{ω} .

$$\mathcal{L}(\boldsymbol{\omega},\boldsymbol{u},\boldsymbol{p};\boldsymbol{f},\boldsymbol{g},\boldsymbol{\widehat{u}}\times\boldsymbol{n},\boldsymbol{\widehat{p}}) = \frac{1}{2} (\boldsymbol{\omega},\boldsymbol{\omega})_{\Omega} - \langle \boldsymbol{\omega},\boldsymbol{\widehat{u}}\times\boldsymbol{n} \rangle_{\Gamma_{\boldsymbol{u}\times\boldsymbol{n}}} - (\boldsymbol{u},\nabla\times\boldsymbol{\omega}-\boldsymbol{f})_{\Omega} + (\boldsymbol{p},\nabla\cdot\boldsymbol{u})_{\Omega} - \langle \boldsymbol{\widehat{p}},\boldsymbol{u}\cdot\boldsymbol{n} \rangle_{\Gamma_{\boldsymbol{p}}},$$
(5)

where $\boldsymbol{\omega} \in H_0(\operatorname{curl}, \Omega; \Gamma_{\boldsymbol{\omega}})$, $\boldsymbol{u} \in H_0(\operatorname{div}, \Omega; \Gamma_{\boldsymbol{u}\cdot\boldsymbol{n}})$, $p \in L^2(\Omega)$, and $f \in [L^2(\Omega)]^3$, $g \in L^2(\Omega)$, $\hat{\boldsymbol{u}} \times \boldsymbol{n} \in TH_{00}^{1/2}(\Gamma_{\boldsymbol{u}\times\boldsymbol{n}})$, $\hat{p} \in H_{00}^{1/2}(\Gamma_p)$ are given.

tr
$$\boldsymbol{\omega} \in \left[TH_{00}^{1/2}(\Gamma_{\boldsymbol{u} \times \boldsymbol{n}}) \right]'$$

tr $\boldsymbol{u} \in \left[H_{00}^{1/2}(\Gamma_p) \right]'$

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	
000	0000000	0000000	00000000000	0

Variational formulation

Given $f \in [L^2(\Omega)]^3$, $g \in L^2(\Omega)$, $\hat{u} \times n \in TH^{1/2}_{00}(\Gamma_{u \times n})$, $\hat{p} \in H^{1/2}_{00}(\Gamma_p)$, seek $\omega \in H_0(\operatorname{curl}, \Omega; \Gamma_\omega)$, $u \in H_0(\operatorname{div}, \Omega; \Gamma_{u \cdot n})$, $p \in L^2(\Omega)$ such that

$$\begin{cases} (\boldsymbol{\omega}, \overline{\boldsymbol{\omega}})_{\Omega} - (\boldsymbol{u}, \nabla \times \overline{\boldsymbol{\omega}})_{\Omega} = \langle \operatorname{tr} \overline{\boldsymbol{\omega}}, \hat{\boldsymbol{u}} \times \boldsymbol{n} \rangle_{\Gamma_{\boldsymbol{u} \times \boldsymbol{n}}}, & \forall \overline{\boldsymbol{\omega}} \in H_0(\operatorname{curl}, \Omega; \Gamma_{\boldsymbol{\omega}}) \\ (\overline{\boldsymbol{u}}, \nabla \times \boldsymbol{\omega})_{\Omega} - (\boldsymbol{p}, \nabla \cdot \overline{\boldsymbol{u}})_{\Omega} = (\overline{\boldsymbol{u}}, \boldsymbol{f})_{\Omega} - \langle \hat{\boldsymbol{p}}, \overline{\boldsymbol{u}} \cdot \boldsymbol{n} \rangle_{\Gamma_p}, & \forall \overline{\boldsymbol{u}} \in H_0(\operatorname{div}, \Omega; \Gamma_{\boldsymbol{u} \cdot \boldsymbol{n}}) \\ (\overline{\boldsymbol{p}}, \nabla \cdot \boldsymbol{u})_{\Omega} = \boldsymbol{0}, & \forall \overline{\boldsymbol{p}} \in L^2(\Omega) \end{cases}$$

We choose \mathscr{E} to approximate $H_0(\operatorname{curl}, \Omega; \Gamma_{\omega})$, \mathscr{S} to approximate $H_0(\operatorname{div}, \Omega; \Gamma_{u \cdot n})$, \mathscr{V} to approximate $L^2(\Omega)$, we obtain

$$\begin{cases} \mathbb{M}_{\mathscr{E}} & -\mathbb{E}_{\operatorname{curl}}^{1} \mathbb{M}_{\mathscr{S}} & \mathbf{0} \\ -\mathbb{M}_{\mathscr{S}} \mathbb{E}_{\operatorname{curl}} & \mathbf{0} & \mathbb{E}_{\operatorname{div}}^{\mathsf{T}} \mathbb{M}_{\mathscr{V}} \\ \mathbb{M}_{\mathscr{V}} \mathbb{E}_{\operatorname{div}} & \mathbf{0} & \mathbf{0} \end{cases} \begin{cases} \boldsymbol{\omega} \\ \boldsymbol{u} \\ \boldsymbol{p} \end{cases} = \begin{cases} \mathbb{B}_{\widehat{\boldsymbol{u}} \times \boldsymbol{n}} \\ -\mathbb{M}_{\mathscr{S}} \boldsymbol{f} + \mathbb{B}_{\widehat{\boldsymbol{p}}} \\ \mathbf{0} \end{cases} \end{cases}$$

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	Conclusions
		0000000		

Now, we consider to divide the domain Ω into a mesh of M disjoint subdomains, Ω_m , $m = 1, 2, \dots, M$, and we use Γ_{mn} to represent the interface of Ω_m and Ω_n .

Given $f \in [L^2(\Omega_m)]^3$, $g \in L^2(\Omega_m)$, $\hat{\boldsymbol{u}} \times \boldsymbol{n} \in TH_{00}^{1/2}(\Gamma_{\boldsymbol{u} \times \boldsymbol{n}} \cap \partial \Omega_m)$, $\hat{\boldsymbol{p}} \in H_{00}^{1/2}(\Gamma_p \cap \partial \Omega_m)$, seek $\boldsymbol{\omega} \in H_0(\operatorname{curl}, \Omega_m; \Gamma_{\boldsymbol{\omega}} \cap \partial \Omega_m)$, $\boldsymbol{u} \in H_0(\operatorname{div}, \Omega_m; \Gamma_{\boldsymbol{u} \cdot \boldsymbol{n}} \cap \partial \Omega_m)$, $\boldsymbol{p} \in L^2(\Omega_m)$, $\gamma \in TH_{00}^{1/2}(\Gamma_{mn})$, $\lambda \in H_{00}^{1/2}(\Gamma_{mn})$, such that

$$\begin{cases} (\boldsymbol{\omega}, \overline{\boldsymbol{\omega}})_{\Omega_m} - (\boldsymbol{u}, \nabla \times \overline{\boldsymbol{\omega}})_{\Omega_m} - \sum_n \langle \operatorname{tr} \, \overline{\boldsymbol{\omega}}, \gamma \rangle_{\Gamma_{mm}} = \langle \operatorname{tr} \, \overline{\boldsymbol{\omega}}, \hat{\boldsymbol{u}} \times \boldsymbol{n} \rangle_{\Gamma_{\boldsymbol{u} \times \boldsymbol{n}} \cap \partial \Omega_m}, & \forall \overline{\boldsymbol{\omega}} \in H_0(\operatorname{curl}, \Omega_m; \Gamma_{\boldsymbol{\omega}} \cap \partial \Omega_m) \\ (\overline{\boldsymbol{u}}, \nabla \times \boldsymbol{\omega})_{\Omega_m} - (p, \nabla \cdot \overline{\boldsymbol{u}})_{\Omega_m} + \sum_n \langle \lambda, \overline{\boldsymbol{u}} \cdot \boldsymbol{n} \rangle_{\Gamma_{mm}} = (\overline{\boldsymbol{u}}, f)_{\Omega_m} - \langle \hat{p}, \overline{\boldsymbol{u}} \cdot \boldsymbol{n} \rangle_{\Gamma_p \cap \partial \Omega_m}, & \forall \overline{\boldsymbol{u}} \in H_0(\operatorname{div}, \Omega_m; \Gamma_{\boldsymbol{u} \cdot \boldsymbol{n}} \cap \partial \Omega_m) \\ (\overline{p}, \nabla \cdot \boldsymbol{u})_{\Omega} = 0, & \forall \overline{p} \in L^2(\Omega_m) \\ \langle \overline{\gamma}, \operatorname{tr} \, \boldsymbol{\omega}_m - \operatorname{tr} \, \boldsymbol{\omega}_n \rangle_{\Gamma_{mm}} = 0, & \forall \overline{\gamma} \in TH_{00}^{1/2}(\Gamma_{mm}) \\ \langle \overline{\lambda}, \boldsymbol{u}_m \cdot \boldsymbol{n} - \boldsymbol{u}_n \cdot \boldsymbol{n} \rangle_{\Gamma_{mm}} = 0, & \forall \overline{\lambda} \in H_{00}^{1/2}(\Gamma_{mm}) \end{cases}$$

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	Conclusions
		0000000		

In the mixed formulation, we choose \mathscr{E} to approximate $H_0(\operatorname{curl},\Omega;\Gamma_{\omega})$, \mathscr{S} to approximate $H_0(\operatorname{div},\Omega;\Gamma_{u\cdot n})$, \mathscr{V} to approximate $L^2(\Omega)$, we obtain

$$\begin{cases} \mathbb{M}_{\mathscr{E}} & -\mathbb{E}_{\mathrm{curl}}^{\mathsf{T}} \mathbb{M}_{\mathscr{S}} & \mathbf{0} \\ -\mathbb{M}_{\mathscr{S}} \mathbb{E}_{\mathrm{curl}} & \mathbf{0} & \mathbb{E}_{\mathrm{div}}^{\mathsf{T}} \mathbb{M}_{\mathscr{Y}} \\ \mathbb{M}_{\mathscr{Y}} \mathbb{E}_{\mathrm{div}} & \mathbf{0} & \mathbf{0} \end{cases} \begin{cases} \vec{\omega} \\ \vec{u} \\ \vec{p} \end{cases} = \begin{cases} \mathbb{B}_{\hat{u} \times n} \\ -\mathbb{M}_{\mathscr{S}} \vec{f} + \mathbb{B}_{\hat{p}} \\ \mathbf{0} \end{cases} \end{cases}$$

In the hybrid mixed formulation, we further choose tr \mathscr{E} to approximate $TH_{00}^{1/2}(\Gamma_{mn})$, and tr \mathscr{S} to approximate $H_{00}^{1/2}(\Gamma_{mn})$

$$\begin{cases} \mathbb{M}_{\mathscr{E}} & -\mathbb{E}_{\mathrm{curl}}^{\mathsf{T}} \mathbb{M}_{\mathscr{S}} & \mathbf{0} & \mathbb{N}_{\mathscr{E}}^{\mathsf{T}} \mathbf{M}_{\mathrm{tr}\mathscr{E}} & \mathbf{0} \\ -\mathbb{M}_{\mathscr{S}} \mathbb{E}_{\mathrm{curl}} & \mathbf{0} & \mathbb{E}_{\mathrm{div}}^{\mathsf{T}} \mathbb{M}_{\mathscr{Y}} & \mathbf{0} & \mathbb{N}_{\mathscr{S}}^{\mathsf{T}} \mathbf{M}_{\mathrm{tr}\mathscr{S}} \\ \mathbb{M}_{\mathscr{Y}} \mathbb{E}_{\mathrm{div}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbb{M}_{\mathrm{tr}\mathscr{E}} \mathbb{N}_{\mathscr{E}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_{\mathrm{tr}\mathscr{S}} \mathbb{N}_{\mathscr{S}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{cases} \\ \end{cases} \begin{cases} \vec{\omega} \\ \vec{\mu} \\ \vec{p} \\ \vec{\gamma} \\ \vec{\lambda} \end{cases} = \begin{cases} \mathbb{B}_{\vec{\mu} \times n} \\ -\mathbb{M}_{\mathscr{S}} f + \mathbb{B}_{\hat{p}} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{cases} \end{cases}$$

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	Conclusions
		00000000		

In the mixed formulation, we choose \mathscr{E} to approximate $H_0(\operatorname{curl},\Omega;\Gamma_{\omega})$, \mathscr{S} to approximate $H_0(\operatorname{div},\Omega;\Gamma_{u\cdot n})$, \mathscr{V} to approximate $L^2(\Omega)$, we obtain

$$\begin{cases} \mathbb{M}_{\mathscr{E}} & -\mathbb{E}_{\mathrm{curl}}^{\mathsf{T}} \mathbb{M}_{\mathscr{S}} & \mathbf{0} \\ -\mathbb{M}_{\mathscr{S}} \mathbb{E}_{\mathrm{curl}} & \mathbf{0} & \mathbb{E}_{\mathrm{div}}^{\mathsf{T}} \mathbb{M}_{\mathscr{Y}} \\ \mathbb{M}_{\mathscr{Y}} \mathbb{E}_{\mathrm{div}} & \mathbf{0} & \mathbf{0} \end{cases} \begin{cases} \vec{\omega} \\ \vec{u} \\ \vec{p} \end{cases} = \begin{cases} \mathbb{B}_{\hat{u} \times n} \\ -\mathbb{M}_{\mathscr{S}} \vec{f} + \mathbb{B}_{\hat{p}} \\ \mathbf{0} \end{cases} \end{cases}$$

In the hybrid mixed formulation, we further choose tr \mathscr{E} to approximate $TH_{00}^{1/2}(\Gamma_{mn})$, and tr \mathscr{S} to approximate $H_{00}^{1/2}(\Gamma_{mn})$. And if we further use dual representations for p, γ, f and λ ,

$$\begin{cases} \mathbb{M}_{\mathscr{E}} & -\mathbb{E}_{\mathrm{curl}}^{\mathsf{T}} \mathbb{M}_{\mathscr{S}} & \mathbf{0} & \mathbb{N}_{\mathscr{E}}^{\mathsf{T}} & \mathbf{0} \\ -\mathbb{M}_{\mathscr{S}} \mathbb{E}_{\mathrm{curl}} & \mathbf{0} & \mathbb{E}_{\mathrm{div}}^{\mathsf{T}} & \mathbf{0} & \mathbb{N}_{\mathscr{S}}^{\mathsf{T}} \\ \mathbb{E}_{\mathrm{div}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbb{N}_{\mathscr{E}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbb{N}_{\mathscr{S}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \end{cases} \begin{cases} \vec{w} \\ \vec{i} \\ \vec{p} \\ \vec{\tilde{p}} \\ \vec{\tilde{k}} \end{cases} = \begin{cases} \mathbb{B}_{\vec{u} \times n} \\ = \widetilde{\mathbb{B}_{\vec{u} \times n}} \\ = \widetilde{\mathbb{B}_{\vec{u} \times n}}$$

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	Conclusions
		00000000		
Hybridization				

$$\begin{cases} \mathbb{M}_{\mathscr{E}} & -\mathbb{E}_{\mathrm{curl}}^{\mathsf{T}} \mathbb{M}_{\mathscr{S}} & \mathbf{0} & \mathbb{N}_{\mathscr{E}}^{\mathsf{T}} & \mathbf{0} \\ -\mathbb{M}_{\mathscr{S}} \mathbb{E}_{\mathrm{curl}} & \mathbf{0} & \mathbb{E}_{\mathrm{div}}^{\mathsf{T}} & \mathbf{0} & \mathbb{N}_{\mathscr{S}}^{\mathsf{T}} \\ \mathbb{E}_{\mathrm{div}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbb{N}_{\mathscr{E}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbb{N}_{\mathscr{S}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \end{cases} \begin{cases} \vec{w} \\ \vec{i} \\ \vec{p} \\ \vec{\tilde{p}} \\ \vec{\tilde{r}} \\ \vec{\tilde{$$

Unfortunately, this system is singular, because matrix $\mathbb{N}_{\mathscr{E}}$ is not surjective (breaks the inf-sub condition).

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	
		00000000		

$$\begin{cases} \mathbb{M}_{\mathscr{E}} & -\mathbb{E}_{\text{curl}}^{\mathsf{T}} \mathbb{M}_{\mathscr{S}} & \mathbf{0} & \mathbb{N}_{\mathscr{E}}^{\prime,\mathsf{T}} & \mathbf{0} & \mathbf{0} \\ -\mathbb{M}_{\mathscr{S}} \mathbb{E}_{\text{curl}} & \mathbf{0} & \mathbb{E}_{\text{div}}^{\mathsf{T}} & \mathbf{0} & \mathbb{N}_{\mathscr{S}}^{\mathsf{T}} & \mathbf{0} \\ \mathbb{E}_{\text{div}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbb{N}_{\mathscr{E}}^{\prime} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbb{D}^{\mathsf{T}} \\ \mathbf{0} & \mathbb{N}_{\mathscr{S}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbb{D} & \mathbf{0} & \mathbf{0} \end{cases} \end{cases} \begin{cases} \vec{\overline{w}} \\ \vec{\overline{u}} \\ \vec{\overline{p}} \\ \vec{\overline{p}} \\ \vec{\overline{n}} \\ \vec{\overline{d}} \end{cases} \\ = \begin{cases} \mathbb{B}_{\vec{u} \times n} \\ -\vec{\overline{f}} + \mathbb{B}_{\hat{p}} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{cases} \end{cases}$$

Introduce dummy degrees of freedom :

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	Conclusions
		0000000		

$$\begin{cases} \mathbb{M}_{\mathscr{E}} & -\mathbb{E}_{\text{curl}}^{\mathsf{T}} \mathbb{M}_{\mathscr{S}} & \mathbf{0} \\ -\mathbb{M}_{\mathscr{S}} \mathbb{E}_{\text{curl}} & \mathbf{0} & \mathbb{E}_{\text{div}}^{\mathsf{T}} & \mathbf{0} \\ \mathbb{E}_{\text{div}} & \mathbf{0} & \mathbf{0} \\ \mathbb{N}_{\mathscr{E}}' & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbb{N}_{\mathscr{S}}' & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf$$

Introduce dummy degrees of freedom :

(C	D^{T}	0)
(D	0	E^{T}
lo	Ε	0)

A condition for such a system being non-singular :

$$\operatorname{Ker}D^{\mathsf{T}} \cap \operatorname{Ker}(E) = 0, \quad \operatorname{Ker}E^{\mathsf{T}} = 0,$$

 $C_{\widetilde{K}\widetilde{K}}:\widetilde{K}\to\widetilde{K}$ is non-singular, where $\widetilde{K}:=\{x, \text{ such that } z^{\mathsf{T}}Dx=0, \ \forall z^{\mathsf{T}}\in \mathrm{Ker}E\}.$

Mimetic, dual and hybrid	Numerical method	Numerical experiments	
		• 00 00000000	
Analytical solution			

Analytical solution

We consider the computational domain $\Omega = [-1, 1]^3$,

$$\begin{split} u &= \cos(2\pi x)\cos(2\pi y)\sin(2\pi z),\\ v &= \sin(2\pi x)\cos(2\pi y)\cos(2\pi z),\\ w &= -\sin(2\pi x)\cos(2\pi y)\cos(2\pi z) + \sin(2\pi x)\sin(2\pi y)\sin(2\pi z),\\ p &= e^{x(x-1)+y(y-1)+z(z-1)}. \end{split}$$

Figure -c = 0

Figure – c = 0.25

Mimetic, dual and hybrid	Numerical method	Numerical experiments	
		0000000000	
Analytical solution			

Analytical solution

Mimetic, dual and hybrid	Numerical method	Discretization	Numerical experiments	Conclusions
			0000000000	
Analytical solution				

Analytical solution

Ż

Mimetic, dual and hybrid	Numerical method	Numerical experiments	
		000000000	
2D wave-shaped lid driven cavity			

2D wave-shaped lid driven cavity

The domain is $(x, y) \in \Omega = [0, 5] \times [y(x), 2]$ where

$$y(x) = -0.3\sin(\pi x)\left(1 - \frac{|x - 2.5|}{2.5}\right)$$

Mimetic, dual and hybrid	Numerical method	Numerical experiments	
		0000000000	
2D wave-shaped lid driven cavity			

2D wave-shaped lid driven cavity

Mimetic, dual and hybrid	Numerical method	Numerical experiments	
		0000000000	
2D wave-shaped lid driven cavity			

2D wave-shaped lid driven cavity

Mimetic, dual and hybrid	Numerical method	Numerical experiments	
		00000000000	
Stokes flow induced by cylinder rotation			

$$A = \frac{x_0}{y_0}$$

Mimetic, dual and hybrid	Numerical method	Numerical experiments	
		000000000000	
Stokes flow induced by cylinder rotation			

Mimetic, dual and hybrid	Numerical method	Numerical experiments	
		0000000000000	
Stokes flow induced by cylinder rotation			

Mimetic, dual and hybrid	Numerical method	Numerical experiments	
		000000000000	
Stokes flow induced by cylinder rotation			

Mimetic, dual and hybrid	Numerical method		Numerical experiments	
			000000000000	
Stokes flow induced by cylinder rotation				

Mimetic, dual and hybrid	Numerical method	Numerical experiments	
		0000000000	
Stokes flow induced by cylinder rotation			

Mimetic, dual and hybrid	Numerical method	Numerical experiments	Conclusions
			•
Conclusions			

We have proposed a high order spectral element method for the Stokes equation in Velocity-Vorticity-Pressure formulation :

- The method uses integral values as dof's.
- The method is hybrid; it is very easy to parallelize. Imposing boundary conditions is easy; we have dof's on boundary for both Dirichlet and Neumann boundary conditions.
- The method is mimetic; first-order differential operators can be preserved at the discrete level.
- The method uses dual polynomials; some discrete matrices are metric-free, extremely sparse and low order finite-difference(volume)-like (containing non-zero entries of −1 and 1 only).
- It can be efficiently solved by solving a reduced system for the interface variable.

Further developments towards Navier-Stokes is ongoing.

Thanks a lot. Questions?

Mimetic, dual and hybrid	Numerical method	Numerical experiments	Conclusions
			•
Conclusions			

We have proposed a high order spectral element method for the Stokes equation in Velocity-Vorticity-Pressure formulation :

- The method uses integral values as dof's.
- The method is hybrid; it is very easy to parallelize. Imposing boundary conditions is easy; we have dof's on boundary for both Dirichlet and Neumann boundary conditions.
- The method is mimetic; first-order differential operators can be preserved at the discrete level.
- The method uses dual polynomials; some discrete matrices are metric-free, extremely sparse and low order finite-difference(volume)-like (containing non-zero entries of −1 and 1 only).
- It can be efficiently solved by solving a reduced system for the interface variable.

Further developments towards Navier-Stokes is ongoing.

Thanks a lot. Questions?