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Mimetic

Mimetic spectral element method (MSEM) 1, 2, 3 is arbitrary order structure-preserving mixed finite element
methods.

It is structure-preserving because they use finite dimensional function spaces that obey the de Rham complex :

R→H1 grad→ H(curl) curl→ H(div) div→ L2 → 0,

↓ ↓ ↓ ↓

R→H1
h

grad→ Hh(curl) curl→ Hh(div) div→ L2
h → 0.

It is computationally costly. (i) : the large amount of dofs, (ii) : the low sparsity.

We are going to reduce the computation cost of MSEM from this two aspects.

1. Kreeft, J., Palha, A. and Gerritsma, M. Mimetic framework on curvilinear quadrilaterals of arbitrary order. arXiv preprint, (2011) arXiv :1111.4304.
2. Kreeft, J. and Gerritsma, M. Mixed mimetic spectral element method for Stokes flow : A pointwise divergence-free solution. Journal of Computational Physics,

(2013) 240 : 284-309.
3. Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J. and Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to

the Poisson equation of volume forms. Journal of Computational Physics, (2014) 257 : 1394-1422.
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Hybrid finite element methods

Hybrid finite element methods 4 5 are those methods that first allow the discontinuity across the inter-element inter-
face then re-enforce (weakly or strongly) the continuity by introducing a Lagrange multiplier between elements.

↑
Lagrange multiplier

Similar idea has also be used in, e.g., mortar methods and finite element tearing and interconnecting (FETI) methods,
and more.

4. T. H. Pian, C.-C. Wu, Hybrid and incompatible finite element methods, Chapman and Hall/CRC, 2005.
5. F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, Vol. 15, Springer Science & Business Media, 2012.
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Dual basis functions

Using dual basis functions 6 7 eliminates some metric-dependent matrices from the discrete system.

(φ, ϕ) = φTMϕ

(φ, ϕ̃) = φT ϕ̃

where ϕ̃ represent it is expanded with dual basis functions.

6. P. Wozny, Construction of dual bases, Journal of Computational and Applied Mathematics 245 (2013) 75-85
7. P. Wozny, Construction of dual b-spline functions, Journal of Computational and Applied Mathematics 260 (2014) 301-311
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Mimetic basis functions

Let −1 ≤ ξ0 < ξ1 < · · · < ξN ≤ 1. The well-known Lagrange polynomials are expressed by li(ξ) :

li(ξ) =
N

∏
j=0,j 6=i

ξ − ξj

ξi − ξj
, i ∈ {0, 1, 2, · · · , N} , satisfying, li(ξ) = δi,j.

The corresponding edge polynomials 8 are

ei(ξ) = −
i−1

∑
k=0

dlk(ξ)
dξ

=
N

∑
k=i

dlk(ξ)
dξ

, i ∈ {1, 2, · · · , N} satisfying,
∫ ξj

ξj−1

ei(ξ) = δi,j.
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8. Gerritsma, M. Edge functions for spectral element methods. Spectral and High Order Methods for Partial Differential Equations. Springer, (2011) 199-207
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Mimetic basis functions

Let LN := span(li), and E
(N−1) := span(ei). If ph ∈ L

N , qh ∈ E
(N−1), and qh = dph

ph =
N

∑
i=0

pili(ξ) and qh =
N

∑
i=1

qiei(ξ)

Let p =
{

p0 p1 · · · pN
}T , q =

{
q1 q2 · · · qN

}T. We have q = Ep,

E =





−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1





We have constructed such a discrete de Rham complex in R :

L
N ↔ L

N ⊂ H1(I)

↓ E ↓ d ↓ d

E
(N−1) ↔ E

(N−1) ⊂ L2(I)

.
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Mimetic basis functions

In R3, we define spaces

N := L
N ⊗ L

N ⊗ L
N ,

E := E
(N−1) ⊗ L

N ⊗ L
N × L

N ⊗ E
(N−1) ⊗ L

N × L
N ⊗ L

N ⊗ E
(N−1),

S := L
N ⊗ E

(N−1) ⊗ E
(N−1) × E

(N−1) ⊗ L
N ⊗ E

(N−1) × E
(N−1) ⊗ E

(N−1) ⊗ L
N ,

V := E
(N−1) ⊗ E

(N−1) ⊗ E
(N−1),

where notations N , E , S , and V stand for nodes, edges, surfaces, and volumes because the degrees of freedom are
associated with nodes, edges, faces and volumes, due to the Kronecker delta properties of the nodal and edge
functions.

N ↔ N ⊂ H1(Ωref)

↓ Egrad ↓ grad ↓ grad

E ↔ E ⊂ H(curl; Ωref)

↓ Ecurl ↓ curl ↓ curl

S ↔ S ⊂ H(div; Ωref)

↓ Ediv ↓ div ↓ div

V ↔ V ⊂ L2(Ωref)

.
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Mimetic basis functions

We consider the discrete vector valued function αh in S . The trace of αh on the face, for example, (ξ, η, ς) ∈
Γξ− = −1× [−1, 1]× [−1, 1] is

trξ−αh =





αh
ξ (−1, η, ς)

αh
η(−1, η, ς)

αh
ς(−1, η, ς)




·




−1
0
0



 = −

N

∑
i=0

N

∑
j=1

N

∑
k=1

aξ
i,j,kli(−1)ej(η)ek(ς) =

N

∑
j=1

N

∑
k=1

aξ−
j,k ej(η)ek(ς).

The polynomials ej(η)ek(ς) then span a trace space on Γξ− . We denote this trace space by Sξ− and there is a linear
operator Nξ− which maps α into αξ− :

αξ− = Nξ−α.

For example, if N = 2, we can have

Nξ− =





−1 0 0 0 0 · · ·
0 −1 0 0 0 · · ·
0 0 −1 0 0 · · ·
0 0 0 −1 0 · · ·
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Dual representations

We consider the primal polynomial space V , and let ϕh, φh ∈ V . The L2-inner product between ϕh and φh is
(

ϕh, φh
)

Ωref
= ϕTMV φ,

The dual polynomials can then be defined as

{
· · · , ẽeei,j,k(ξ, η, ς), · · ·

}T := M−1
V

{
· · · , ei(ξ)ej(η)ek(ς), · · ·

}T .

These dual polynomials form another basis of the space V . An element, φh, in V has a unique dual representation,
denoted by φ̃h, whose degrees of freedom are

φ̃ = MV φ.

Now, the L2-inner product between ϕh and φ̃h is
(

ϕh, φ̃h
)

Ωref
= ϕTφ̃.
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Dual representations

1. If βh = divαh ∈ V and φ̃h ∈ V , we have
(

φ̃h, βh
)

Ωref
=
(

φ̃h, divαh
)

Ωref
= φ̃

T
Edivα. (1)

2. If αh ∈ S and γ̃ ∈ Sξ− , we have 〈
γ̃, trξ−αh

〉
Γξ−

= γ̃TNξ−α. (2)

3. A integration by parts is given by
∫

Ω
α · gradφdΩ =

∫

∂Ω
φ̂α · ndΓ−

∫

Ω
φ divαdΩ.

If αh ∈ S and φ̃h ∈ V , the discrete integration by parts is written as
(

gradφ̃h, αh
)

Ωref
=
〈

φ̂h, trαh
〉

∂Ωref
−
(

φ̃h, divαh
)

Ωref
. (3)

If ϑ̃h := ∇φ̃h, with (1) and (2), we know
ϑ̃ = NT

S φ̂−ET
divφ̃, (4)

where NS can be obtained by assembling the trace matrices.
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Transformation

Let a C1 diffeomorphism, Φm : Ωref → Ωm, and use Nm, Em, Sm, and Vm represent the corresponding spaces in
Ωm.

1. The transformation between ψh(ξ, η, ς) ∈ N and ψh
m(x, y, z) ∈ Nm is given by

ψh
m(x, y, z) =

(
ψh ◦Φ−1

m

)
(x, y, z), ψh(ξ, η, ς) =

(
ψh

m ◦Φm

)
(ξ, η, ς).

2. The transformation between ϕh(ξ, η, ς) ∈ E and ϕh
m(x, y, z) ∈ Em is given by

ϕh
m(x, y, z) =

(
J T
)−1 (

ϕh ◦Φ−1
m

)
(x, y, z), ϕh(ξ, η, ς) = J T

(
ϕh

m ◦Φm

)
(ξ, η, ς).

3. The transformation between αh(ξ, η, ς) ∈ S and αh
m(x, y, z) ∈ Sm is given by

αh
m(x, y, z) =

J
detJ

(
αh ◦Φ−1

m

)
(x, y, z), αh(ξ, η, ς) =

J −1

detJ
(

αh
m ◦Φm

)
(ξ, η, ς).

4. The transformation between βh(ξ, η, ς) ∈ V and βh
m(x, y, z) ∈ Vm is given by

βh
m(x, y, z) =

1
detJ

(
βh ◦Φ−1

m

)
(x, y, z), βh(ξ, η, ς) = detJ

(
βh

m ◦Φm

)
(ξ, η, ς).
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Transformation

Let a C1 diffeomorphism, Φm : Ωref → Ωm, and use Nm, Em, Sm, and Vm represent the corresponding spaces in
Ωm.

N m ↔ Nm ⊂ H1(Ωm)

↓ Egrad ↓ grad ↓ grad

E m ↔ Em ⊂ H(curl; Ωm)

↓ Ecurl ↓ curl ↓ curl

S m ↔ Sm ⊂ H(div; Ωm)

↓ Ediv ↓ div ↓ div

V m ↔ Vm ⊂ L2(Ωm)

.
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Stokes Velocity-Vorticity-Pressure formulation

The Stokes equations in the Velocity-Vorticity-Pressure formulation is given as




ω−∇× u = 0

∇×ω +∇p = f

∇ · u = 0

Given a bounded domain Ω in R3 with boundaries ∂Ω = Γp ∪ Γu·n = Γu×n ∪ Γω where Γp ∩ Γu·n = ∅, Γu×n ∩ Γω =
∅, and given p̂ on Γp, û · n on Γu·n, û× n on Γu×n, and ω̂ on Γω.

L(ω, u, p; f , g, û× n, p̂) =
1
2
(ω, ω)Ω − 〈ω, û× n〉Γu×n

− (u,∇×ω− f )Ω + (p,∇ · u)Ω − 〈p̂, u · n〉Γp
, (5)

where ω ∈ H0(curl, Ω; Γω), u ∈ H0(div, Ω; Γu·n), p ∈ L2(Ω), and f ∈ [L2(Ω)]3, g ∈ L2(Ω), û× n ∈ TH1/2
00 (Γu×n),

p̂ ∈ H1/2
00 (Γp) are given.

tr ω ∈
[
TH1/2

00 (Γu×n)
]′

tr u ∈
[
H1/2

00 (Γp)
]′
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Variational formulation

Given f ∈ [L2(Ω)]3, g ∈ L2(Ω), û×n ∈ TH1/2
00 (Γu×n), p̂ ∈ H1/2

00 (Γp), seek ω ∈ H0(curl, Ω; Γω), u ∈ H0(div, Ω; Γu·n),
p ∈ L2(Ω) such that





(ω, ω)Ω − (u,∇×ω)Ω = 〈tr ω, û× n〉Γu×n
, ∀ω ∈ H0(curl, Ω; Γω)

(u,∇×ω)Ω − (p,∇ · u)Ω = (u, f )Ω − 〈p̂, u · n〉Γp
, ∀u ∈ H0(div, Ω; Γu·n)

(p,∇ · u)Ω = 0, ∀p ∈ L2(Ω)

.

We choose E to approximate H0(curl, Ω; Γω), S to approximate H0(div, Ω; Γu·n), V to approximate L2(Ω), we
obtain 




ME −ET
curlMS 0

−MS Ecurl 0 ET
divMV

MV Ediv 0 0









ω
u
p



 =





Bû×n
−MS f + Bp̂

0
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Hybridization

Now, we consider to divide the domain Ω into a mesh of M disjoint subdomains, Ωm, m = 1, 2, · · · , M, and we
use Γmn to represent the interface of Ωm and Ωn.

Given f ∈ [L2(Ωm)]3, g ∈ L2(Ωm), û× n ∈ TH1/2
00 (Γu×n ∩ ∂Ωm), p̂ ∈ H1/2

00 (Γp ∩ ∂Ωm), seek ω ∈ H0(curl, Ωm; Γω ∩
∂Ωm), u ∈ H0(div, Ωm; Γu·n ∩ ∂Ωm), p ∈ L2(Ωm), γ ∈ TH1/2

00 (Γmn), λ ∈ H1/2
00 (Γmn), such that





(ω, ω)Ωm
− (u,∇×ω)Ωm

−∑
n
〈tr ω, γ〉Γmn

= 〈tr ω, û× n〉Γu×n∩∂Ωm
, ∀ω ∈ H0(curl, Ωm; Γω ∩ ∂Ωm)

(u,∇×ω)Ωm
− (p,∇ · u)Ωm

+ ∑
n
〈λ, u · n〉Γmn

= (u, f )Ωm
− 〈p̂, u · n〉Γp∩∂Ωm

, ∀u ∈ H0(div, Ωm; Γu·n ∩ ∂Ωm)

(p,∇ · u)Ω = 0, ∀p ∈ L2(Ωm)

〈γ, tr ωm − tr ωn〉Γmn
= 0, ∀γ ∈ TH1/2

00 (Γmn)
〈
λ, um · n− un · n

〉
Γmn

= 0, ∀λ ∈ H1/2
00 (Γmn)

.
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Hybridization

In the mixed formulation, we choose E to approximate H0(curl, Ω; Γω), S to approximate H0(div, Ω; Γu·n), V to
approximate L2(Ω), we obtain





ME −ET
curlMS 0

−MS Ecurl 0 ET
divMV

MV Ediv 0 0








~ω
~u
~p



 =





Bû×n
−MS

~f + Bp̂
0





In the hybrid mixed formulation, we further choose trE to approximate TH1/2
00 (Γmn), and trS to approximate

H1/2
00 (Γmn)





ME −ET
curlMS 0 NT

E MtrE 0
−MS Ecurl 0 ET

divMV 0 NT
S MtrS

MV Ediv 0 0 0 0
MtrE NE 0 0 0 0

0 MtrS NS 0 0 0









~ω
~u
~p
~γ
~λ





=





Bû×n
−MS f + Bp̂

0
0
0
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Hybridization

In the mixed formulation, we choose E to approximate H0(curl, Ω; Γω), S to approximate H0(div, Ω; Γu·n), V to
approximate L2(Ω), we obtain





ME −ET
curlMS 0

−MS Ecurl 0 ET
divMV

MV Ediv 0 0








~ω
~u
~p



 =





Bû×n
−MS

~f + Bp̂
0





In the hybrid mixed formulation, we further choose trE to approximate TH1/2
00 (Γmn), and trS to approximate

H1/2
00 (Γmn). And if we further use dual representations for p, γ, f and λ,





ME −ET
curlMS 0 NT

E 0
−MS Ecurl 0 ET

div 0 NT
S

Ediv 0 0 0 0
NE 0 0 0 0

0 NS 0 0 0









~ω
~u
~̃p
~̃γ
~̃λ





=





Bû×n

−~̃f + Bp̂
0
0
0
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Hybridization





ME −ET
curlMS 0 NT

E 0
−MS Ecurl 0 ET

div 0 NT
S

Ediv 0 0 0 0
NE 0 0 0 0

0 NS 0 0 0









~ω
~u
~̃p
~̃γ
~̃λ





=





Bû×n

−~̃f + Bp̂
0
0
0





Unfortunately, this system is singular, because matrix NE is not surjective (breaks the inf-sub condition).

NE =





· · · · · · 0 · · · · · ·
· · · 0 1 0 · · ·
· · · 0 1 0 · · ·
· · · · · · 0 · · · · · ·
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Hybridization





ME −ET
curlMS 0 N

′,T
E 0 0

−MS Ecurl 0 ET
div 0 NT

S 0
Ediv 0 0 0 0 0
N′E 0 0 0 0 DT

0 NS 0 0 0 0
0 0 0 D 0 0









~ω
~u
~̃p
~̃γ
~̃λ
~d





=





Bû×n

−~̃f + Bp̂
0
0
0





Introduce dummy degrees of freedom :
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Hybridization





ME −ET
curlMS 0 N

′,T
E 0 0

−MS Ecurl 0 ET
div 0 NT

S 0
Ediv 0 0 0 0 0
N′E 0 0 0 0 DT

0 NS 0 0 0 0
0 0 0 D 0 0









~ω
~u
~̃p
~̃γ
~̃λ
~d





=





Bû×n

−~̃f + Bp̂
0
0
0





Introduce dummy degrees of freedom :




C DT 0
D 0 ET

0 E 0





A condition for such a system being non-singular :

KerDT ∩Ker(E) = 0, KerET = 0,

CK̃K̃ : K̃→ K̃ is non-singular,

where K̃ :=
{

x, such that zTDx = 0, ∀zT ∈ KerE
}

.
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Analytical solution

Analytical solution

We consider the computational domain Ω = [−1, 1]3,

u = cos(2πx) cos(2πy) sin(2πz),

v = sin(2πx) cos(2πy) cos(2πz),

w = − sin(2πx) cos(2πy) cos(2πz) + sin(2πx) sin(2πy) sin(2πz),

p = ex(x−1)+y(y−1)+z(z−1).

Figure – c = 0 Figure – c = 0.25
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Analytical solution

Analytical solution
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The domain is (x, y) ∈ Ω = [0, 5]× [y(x), 2] where

y (x) = −0.3 sin (πx)
(

1− |x− 2.5|
2.5

)
.
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Stokes flow induced by cylinder rotation

A =
x0

y0
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Stokes flow induced by cylinder rotation
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Stokes flow induced by cylinder rotation

A = 1.81 A = 2.02 A = 2.51
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Stokes flow induced by cylinder rotation
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Conclusions

We have proposed a high order spectral element method for the Stokes equation in Velocity-Vorticity-Pressure
formulation :

The method uses integral values as dof’s.

The method is hybrid ; it is very easy to parallelize. Imposing boundary conditions is easy ; we have dof’s on
boundary for both Dirichlet and Neumann boundary conditions.

The method is mimetic ; first-order differential operators can be preserved at the discrete level.

The method uses dual polynomials ; some discrete matrices are metric-free, extremely sparse and low order
finite-difference(volume)-like (containing non-zero entries of −1 and 1 only).

It can be efficiently solved by solving a reduced system for the interface variable.

Further developments towards Navier-Stokes is ongoing.

Thanks a lot. Questions ?
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