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So far, we have built all ingredients necessary for solving a problem. In this assignment, we
will use them to solve a practical problem.

1 Poisson equation

The Poisson equation is a classic model of a large range of physical problems. It is one of the
most important PDE’s in computational physics.

In a unit square domain Ω = [0, 1]2, we consider a most simple form of the Poisson equation,
an elliptical equation written as

(1) −∆φ = f,

where φ and f are two scalar fields, and ∆ is the scalar Laplacian operator, i.e., ∆ = ∇ · ∇. If
we introduce an intermediate variable u := ∇φ, the Poisson equation (1) can be re-written into a
mixed form,

u = ∇φ,(2a)

−∇ · u = f.(2b)

Given f and a proper boundary condition, the problem is closed. In this assignment, we only
consider the homogeneous boundary condition φ = 0 over the whole boundary ∂Ω.

1https://mathischeap.com/contents/teaching/advanced_numerical_methods/mimetic_spectral_element_method/main
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2 Weak formulation

To explore the weak formulation of (2), we firstly restrict the variables to Sobolev spaces,
(φ,u, f) ∈ L2(Ω)×H(div; Ω)× L2(Ω). Note that this choice is according to Hilbert complexes

0 −→ H(curl; Ω)
∇×−→ H(div; Ω)

∇·−→ L2(Ω) −→ 0,

0 −→ H1(Ω)
∇−→ H(rot; Ω)

∇×−→ L2(Ω) −→ 0.

In (2b), the divergence operator is applied to u. Thus, a natural choice is u ∈ H(div; Ω). However,
(2a) says u = ∇φ. If we choose φ ∈ H1(Ω), u = ∇φ will be in H(rot; Ω) which is different from
u ∈ H(div; Ω). To overcome this contradictory, we will need to use the integration by parts to
convert the gradient operator to a divergence operator. As a result, put φ in L2(Ω) becomes fine.
To see this more clearly, we test (2a) with v ∈ H(div; Ω) and test (2b) with ψ ∈ L2(Ω). We obtain

⟨u,v⟩Ω − ⟨∇φ,v⟩Ω = 0, ∀v ∈ H(div; Ω),(3a)

−⟨∇ · u, ψ⟩Ω = ⟨f, ψ⟩Ω , ∀ψ ∈ L2(Ω).(3b)

Do not forget the sign ∀ means FOR ALL. Since φ ∈ L2(Ω), it does not admit a gradient operator
(or the gradient of φ is not guaranteed L2-integrable). Thus, we should use the integration by parts
to it,

⟨∇φ,v⟩Ω = −⟨φ,∇ · v⟩Ω +

∫
∂Ω

φ (v · n) dΓ,

where n is the unit outward norm vector. And, because in this assignment, we use homogeneous
boundary condition φ = 0 all over the boundary, we must have∫

∂Ω

φ (v · n) dΓ = 0.

Thus, we finally get
⟨∇φ,v⟩Ω = −⟨φ,∇ · v⟩Ω .

Use this relation to the second term of (3a), we finally get the weak formulation for this problem:
Given f ∈ L2(Ω), seek (u, φ) ∈ H(div; Ω)× L2(Ω), such that

⟨u,v⟩Ω + ⟨φ,∇ · v⟩Ω = 0, ∀v ∈ H(div; Ω),(4a)

−⟨∇ · u, ψ⟩Ω = ⟨f, ψ⟩Ω , ∀ψ ∈ L2(Ω).(4b)

This way of deriving the weak formulation (4) in fact is not strictly mathematically sound, but
it is a good approach to help the ones new to this method understanding it better.

3 Discretization

We see that the final weak formulation (4) is still at the continuous level. We now need to use
discrete spaces to approximate the Sobolev spaces there. For now, we consider the whole domain,
Ω = [0, 1]2, to one element. Therefore, we can quickly construct mimetic spectral element spaces in
this physical element Ω,

0 −→ C(Ω)
∇×−→ D(Ω)

∇·−→ S(Ω) −→ 0,(5a)

0 −→ G(Ω)
∇−→ R(Ω)

∇×−→ S(Ω) −→ 0.(5b)
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Using these mimetic spectral element spaces to approximate these Sobolev spaces in (4), we obtain
a discrete version of (3): Given fh ∈ S(Ω), seek (uh, φh) ∈ D(Ω)× S(Ω), such that

⟨uh,vh⟩Ω + ⟨φh,∇ · vh⟩Ω = 0, ∀vh ∈ D(Ω),(6a)

−⟨∇ · uh, ψh⟩Ω = ⟨fh, ψh⟩Ω , ∀ψh ∈ S(Ω).(6b)

Now, we shall recall the incidence and mass matrices we have learned and programmed in previous
assignments. We can re-write (6) into a matrix format as follows. Given fh ∈ S(Ω), seek (uh, φh) ∈
D(Ω)× S(Ω), such that

v⃗TMDu⃗+ v⃗TET
DMSφ⃗ = 0, ∀vh ∈ D(Ω),(7a)

−ψ⃗TMSEDu⃗ = ψ⃗TMS f⃗ , ∀ψh ∈ S(Ω),(7b)

Since it holds for all vh ∈ D(Ω) and ψh ∈ S(Ω), we can, for example, select vh such that v⃗ to be
1
0
0
...
0

 ,

0
1
0
...
0

 ,

0
0
1
...
0

 , · · · ,


0
0
0
...
1

 ,

consecutively. As a result, (7a) becomes

MDu⃗+ ET
DMSφ⃗ = 0.

Similarly, (7b) can become

(8) −MSEDu⃗ = MS f⃗ .

Then, we eventually get a linear system to be solved,

MDu⃗+ ET
DMSφ⃗ = 0,

−MSEDu⃗ = MS f⃗ ,

which can be expressed in a matrix equation,

(9)

[
MD ET

DMS

−MSED 0

] [
u⃗
φ⃗

]
=

[
0

MS f⃗

]
,

which is a typical Ax = b matrix equation. Recall that the mass matrix MS is symmetric (in fact,

all mass matrices are symmetric), i.e. MT
S = MS . Thus, we know

(
ET

DMS

)T
= MT

SED = MSED.

This shows the total left matrix of (9), i.e. the A matrix, is anti-symmetric, AT = −A. Or if you
apply a minus to (8), the final linear system becomes

(10)

[
MD ET

DMS

MSED 0

] [
u⃗
φ⃗

]
=

[
0

−MS f⃗

]
,

where the A matrix (of Ax = b form) now becomes symmetric. Furthermore, (8) can be simplified
as

EDu⃗ = −f⃗

if we left-multiply both sides of (8) by the inverse of the mass matrix (a mass matrix must be
invertible). Therefore, we can get a simpler linear system

(11)

[
MD ET

DMS

ED 0

] [
u⃗
φ⃗

]
=

[
0

−f⃗

]
.
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Now, if we send (9), (10), or (11) to a linear system solver, we can obtain u⃗ and φ⃗. And, using
them we can reconstruct uh and φh which are the solutions approximating u and φ.

4 A real problem

Now, we consider a real problem. Still, the domain is Ω = [−1, 1]2. And f is given as

(12) f = 8π2 sin(2πx) sin(2πy).

For a mimetic spectral element degree N , we can obtain

• incidence and mass matrices by calling the functions you have programmed in previous assign-
ment;

• the vector f⃗ by calling the reduction function for S(Ω) you have programmed;

Do not forget that, in this assignment, we consider the whole domain Ω = [−1, 1]2 as a single
physical element.

Using the matrices and f⃗ , we can build A and b of Ax = b according to (9), (10), or (11).
Then, we can send A and b to a linear system solver, for example, see numpy.linalg.solve (you

do not want to program a linear system solver by yourself, right?), and solve for x =
[
u⃗ φ⃗

]T
.

Assignment 4.1.0: Program it!

Program it to solve the problem above. And reconstruct the solutions uh and φh using
the output of the linear solver u⃗ and φ⃗.

For the given f in (12) and the boundary condition φ = 0 on ∂Ω, we actually can find
the analytical solutions of φ and u,

φ = sin(2πx) sin(2πy),

u =

[
2π cos(2πx) sin(2πy)
2π sin(2πx) cos(2πy)

]
.

By comparing your reconstructed solutions uh and φh to them, you can check whether
your program is correct. Try it using, for example, N ∈ {3, 4, 5, · · · , 12} .
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