Introduction 00000 Conservative weak formulation

Discretization 0000000 Tests 000000000 References

A mass-, kinetic energy- and helicity-conserving mimetic spectral element discretization for the incompressible Navier-Stokes equations Part I: Periodic domains

 ${\bf Yi}~{\bf Zhang}^1,$ Artur Palha¹, Marc Gerritsma^{1*} and Leo G. Rebholz²

¹**Delft University of Technology** {y.zhang-14, a.palha, m.i.gerritsma}@tudelft.nl ²**Clemson University** rebholz@clemson.edu

TUDelft

Discrete conservation properties in CFD

Introduction	Conservative weak formulation	Discretization	Tests	References
00000	00000	0000000	00000000	
Motivation				

A mass-, kinetic energy- and helicity-conserving high order method is of significant value in the field of CFD, in particular in the field of turbulence.

Introduction				References
00000	00000	000000	00000000	
Recap				

Rotation form of NSE

The *incompressible Navier-Stokes equations* (convection form) :

(1a)
$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \, \boldsymbol{u} - \nu \Delta \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{f},$$
(1b)
$$\nabla \cdot \boldsymbol{u} = 0.$$

$$(\boldsymbol{u}\cdot
abla) \, \boldsymbol{u} = (
abla imes \boldsymbol{u}) imes \boldsymbol{u} + rac{1}{2}
abla (\boldsymbol{u}\cdot \boldsymbol{u})$$

$$\Delta \boldsymbol{u} = \nabla \left(\nabla \cdot \boldsymbol{u} \right) - \nabla \times \left(\nabla \times \boldsymbol{u} \right) = -\nabla \times \left(\nabla \times \boldsymbol{u} \right)$$

(2a)
$$\frac{\partial u}{\partial t} + \omega \times u + \nu \nabla \times \omega + \nabla P = f,$$

(2b)
$$\boldsymbol{\omega} = \nabla \times \boldsymbol{u},$$

Introduction	Conservative weak formulation	Discretization	Tests	References
00000	00000	000000	00000000	
Recap				

Rotation form of NSE

The incompressible Navier-Stokes equations (convection form) :

(1a)
$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \, \boldsymbol{u} - \nu \Delta \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{f},$$

(1b)
$$\nabla \cdot \boldsymbol{u} = 0.$$

If we use identities

$$(oldsymbol{u}\cdot
abla)oldsymbol{u}=(
abla imesoldsymbol{u}) imesoldsymbol{u}+rac{1}{2}
abla(oldsymbol{u}\cdotoldsymbol{u})$$

and

$$\Delta \boldsymbol{u} = \nabla \left(\nabla \cdot \boldsymbol{u} \right) - \nabla \times \left(\nabla \times \boldsymbol{u} \right) = -\nabla \times \left(\nabla \times \boldsymbol{u} \right)$$

and introduce vorticity $\boldsymbol{\omega} := \nabla \times \boldsymbol{u}$, we can get the **rotation form** :

(2a)
$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{\omega} \times \boldsymbol{u} + \nu \nabla \times \boldsymbol{\omega} + \nabla P = \boldsymbol{f},$$

(2b)
$$\boldsymbol{\omega} = \nabla \times \boldsymbol{u},$$

(2c)
$$\nabla \cdot \boldsymbol{u} = 0.$$

Introduction				References
00000	00000	000000	00000000	
Recap				

Conservation and dissipation

Kinetic energy \mathcal{K} , enstrophy \mathcal{E} , helicity \mathcal{H} :

$$\mathcal{K} = rac{1}{2} ig\langle oldsymbol{u}, oldsymbol{u} ig
angle_\Omega \,, \quad \mathcal{E} = rac{1}{2} ig\langle oldsymbol{\omega}, oldsymbol{\omega} ig
angle_\Omega \,, \quad \mathcal{H} = ig\langle oldsymbol{u}, oldsymbol{\omega} ig
angle_\Omega \,.$$

Mass conservation : $\nabla \cdot \boldsymbol{u} = 0$

Given a conservative external body force f,

Kinetic energy conservation and dissipation :

In inviscid case $\nu = 0$, $\frac{\mathrm{d}\mathcal{K}}{\mathrm{d}t} = 0$; in viscous case $\nu \neq 0$, $\frac{\mathrm{d}\mathcal{K}}{\mathrm{d}t} = -2\nu\mathcal{E}$.

Helicity conservation and dissipation (or generation) :

In inviscid case
$$\nu = 0$$
, $\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} = 0$; in viscous case $\nu \neq 0$, $\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} = -2\nu \langle \boldsymbol{\omega}, \nabla \times \boldsymbol{\omega} \rangle_{\Omega}$.

Introduction				References
00000	00000	000000	00000000	
Recap				

Conservation and dissipation

Kinetic energy \mathcal{K} , enstrophy \mathcal{E} , helicity \mathcal{H} :

$$\mathcal{K} = rac{1}{2} \left\langle oldsymbol{u},oldsymbol{u}
ight
angle_\Omega, \quad \mathcal{E} = rac{1}{2} \left\langle oldsymbol{\omega},oldsymbol{\omega}
ight
angle_\Omega, \quad \mathcal{H} = \left\langle oldsymbol{u},oldsymbol{\omega}
ight
angle_\Omega.$$

Mass conservation : $\nabla \cdot \boldsymbol{u} = 0$

Given a conservative external body force f,

Kinetic energy conservation and dissipation :

In inviscid case
$$\nu = 0$$
, $\frac{\mathrm{d}\mathcal{K}}{\mathrm{d}t} = 0$; in viscous case $\nu \neq 0$, $\frac{\mathrm{d}\mathcal{K}}{\mathrm{d}t} = -2\nu\mathcal{E}$.

Helicity conservation and dissipation (or generation) :

In inviscid case
$$\nu = 0$$
, $\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} = 0$; in viscous case $\nu \neq 0$, $\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} = -2\nu \langle \boldsymbol{\omega}, \nabla \times \boldsymbol{\omega} \rangle_{\Omega}$.

Introduction				References
00000	00000	000000	00000000	
Recap				

Conservation and dissipation

Kinetic energy \mathcal{K} , enstrophy \mathcal{E} , helicity \mathcal{H} :

$$\mathcal{K} = rac{1}{2} \left\langle oldsymbol{u},oldsymbol{u}
ight
angle_{\Omega}, \quad \mathcal{E} = rac{1}{2} \left\langle oldsymbol{\omega},oldsymbol{\omega}
ight
angle_{\Omega}, \quad \mathcal{H} = \left\langle oldsymbol{u},oldsymbol{\omega}
ight
angle_{\Omega}.$$

Mass conservation : $\nabla \cdot \boldsymbol{u} = 0$

Given a conservative external body force \boldsymbol{f} ,

Kinetic energy conservation and dissipation :

In inviscid case $\nu = 0$, $\frac{\mathrm{d}\mathcal{K}}{\mathrm{d}t} = 0$; in viscous case $\nu \neq 0$, $\frac{\mathrm{d}\mathcal{K}}{\mathrm{d}t} = -2\nu\mathcal{E}$.

Helicity conservation and dissipation (or generation) :

In inviscid case
$$\nu = 0$$
, $\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} = 0$; in viscous case $\nu \neq 0$, $\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} = -2\nu \langle \boldsymbol{\omega}, \nabla \times \boldsymbol{\omega} \rangle_{\Omega}$.

Introduction				References
00000	00000	000000	00000000	
Inspirations				

Dual field : Hilbert spaces

$$\begin{array}{c} \mathbb{R} & & \longrightarrow H^{1}(\Omega) \xrightarrow{\nabla} H(\operatorname{curl}; \Omega) \xrightarrow{\nabla \times} H(\operatorname{div}; \Omega) \xrightarrow{\nabla} L^{2}(\Omega) \longrightarrow 0 \\ & & \uparrow & & \uparrow & & \uparrow & & \uparrow \\ & & & \uparrow & & & \uparrow & & \uparrow \\ 0 & \longleftarrow & L^{2}(\Omega) & \xleftarrow{\nabla} H(\operatorname{div}; \Omega) & \xleftarrow{\nabla} H(\operatorname{curl}; \Omega) & \xleftarrow{\nabla} H^{1}(\Omega) & \xleftarrow{\nabla} \mathbb{R} \end{array}$$

Figure – A double de Rham complex of Hilbert spaces.

Introduction	Conservative weak formulation	Discretization	Tests	References
00000	00000	000000	00000000	
Inspirations				

"A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations" [3]

A system of two evolution equations are used in MEEVC scheme :

(3a)
$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{\omega} \times \boldsymbol{u} + \boldsymbol{\nu} \nabla \times \boldsymbol{\omega} + \nabla P = 0,$$

(3b)
$$\frac{\partial \omega}{\partial t} + \frac{1}{2} \left(\boldsymbol{u} \cdot \nabla \right) \omega + \frac{1}{2} \nabla \cdot \left(\boldsymbol{u} \omega \right) = \Delta \omega,$$

(3c) $\nabla \cdot \boldsymbol{u} = 0.$

MEEVC [3]

The two evolution equations are staggered in time such that they can borrow information from each other :

Introduction	Conservative weak formulation	Discretization	Tests	References
00000	00000	000000	00000000	
Inspirations				

"A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations" [3]

A system of two evolution equations are used in MEEVC scheme :

(3a)
$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{\omega} \times \boldsymbol{u} + \boldsymbol{\nu} \nabla \times \boldsymbol{\omega} + \nabla P = 0,$$

(3b)
$$\frac{\partial \omega}{\partial t} + \frac{1}{2} \left(\boldsymbol{u} \cdot \nabla \right) \omega + \frac{1}{2} \nabla \cdot \left(\boldsymbol{u} \omega \right) = \Delta \omega,$$

(3c) $\nabla \cdot \boldsymbol{u} = 0.$

MEEVC [3]

The two evolution equations are staggered in time such that they can borrow information from each other :

	Conservative weak formulation			References
00000	00000	0000000	00000000	

Given $\boldsymbol{f} \in [L^2(\Omega)]^3$, seek $(P_0, \boldsymbol{u}_1, \boldsymbol{\omega}_2) \in H^1(\Omega) \times H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega)$ and $(\boldsymbol{\omega}_1, \boldsymbol{u}_2, P_3) \in H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega) \times L^2(\Omega)$ such that

$$\begin{split} \left\langle \frac{\partial \boldsymbol{u}_{1}}{\partial t}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} + \left\langle \boldsymbol{\omega}_{1} \times \boldsymbol{u}_{1}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} + \nu \left\langle \boldsymbol{\omega}_{2}, \nabla \times \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} + \left\langle \nabla P_{0}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} = \left\langle \boldsymbol{f}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} & \forall \boldsymbol{\epsilon}_{1} \in H(\operatorname{curl}; \Omega), \\ \left\langle \nabla \times \boldsymbol{u}_{1}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} - \left\langle \boldsymbol{\omega}_{2}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{2} \in H(\operatorname{div}; \Omega), \\ \left\langle \boldsymbol{u}_{1}, \nabla \boldsymbol{\epsilon}_{0} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{0} \in H^{1}(\Omega), \\ \left\langle \frac{\partial \boldsymbol{u}_{2}}{\partial t}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} + \left\langle \boldsymbol{\omega}_{2} \times \boldsymbol{u}_{2}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} + \nu \left\langle \nabla \times \boldsymbol{\omega}_{1}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} - \left\langle P_{3}, \nabla \cdot \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} = \left\langle \boldsymbol{f}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} & \forall \boldsymbol{\epsilon}_{2} \in H(\operatorname{div}; \Omega), \\ \left\langle \boldsymbol{u}_{2}, \nabla \times \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} - \left\langle \boldsymbol{\omega}_{1}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{1} \in H(\operatorname{curl}; \Omega), \\ \left\langle \nabla \cdot \boldsymbol{u}_{2}, \boldsymbol{\epsilon}_{3} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{3} \in L^{2}(\Omega). \end{split}$$

Variational analysis will reveal that either subset of the solution, $(\boldsymbol{\omega}_1, \boldsymbol{u}_2, P_3)$ or $(P_0, \boldsymbol{u}_1, \boldsymbol{\omega}_2)$, weakly solves the rotation form of the Navier-Stokes equations; it is a *dual-field* system.

 $\begin{array}{l} Questions:\\ \bigcirc: \text{Is it conservative?}\\ \bigcirc: \text{How to reduce the computational cost? It is a huge non-linear system.} \end{array}$

	Conservative weak formulation			References
00000	00000	000000	00000000	

Given $\boldsymbol{f} \in [L^2(\Omega)]^3$, seek $(\boldsymbol{P_0}, \boldsymbol{u_1}, \boldsymbol{\omega_2}) \in H^1(\Omega) \times H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega)$ and $(\boldsymbol{\omega}_1, \boldsymbol{u}_2, \boldsymbol{P}_3) \in H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega) \times L^2(\Omega)$ such that

$$\begin{split} \left\langle \frac{\partial \boldsymbol{u}_{1}}{\partial t}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} &+ \left\langle \boldsymbol{\omega}_{1} \times \boldsymbol{u}_{1}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} + \nu \left\langle \boldsymbol{\omega}_{2}, \nabla \times \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} + \left\langle \nabla P_{0}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} = \left\langle \boldsymbol{f}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} & \forall \boldsymbol{\epsilon}_{1} \in H(\operatorname{curl}; \Omega), \\ \left\langle \nabla \times \boldsymbol{u}_{1}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} - \left\langle \boldsymbol{\omega}_{2}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{2} \in H(\operatorname{div}; \Omega), \\ \left\langle \boldsymbol{u}_{1}, \nabla \boldsymbol{\epsilon}_{0} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{0} \in H^{1}(\Omega), \\ \left\langle \frac{\partial \boldsymbol{u}_{2}}{\partial t}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} + \left\langle \boldsymbol{\omega}_{2} \times \boldsymbol{u}_{2}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} + \nu \left\langle \nabla \times \boldsymbol{\omega}_{1}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} - \left\langle P_{3}, \nabla \cdot \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} = \left\langle \boldsymbol{f}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} & \forall \boldsymbol{\epsilon}_{2} \in H(\operatorname{div}; \Omega), \\ \left\langle \boldsymbol{u}_{2}, \nabla \times \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} - \left\langle \boldsymbol{\omega}_{1}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{1} \in H(\operatorname{curl}; \Omega), \\ \left\langle \nabla \cdot \boldsymbol{u}_{2}, \boldsymbol{\epsilon}_{3} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{3} \in L^{2}(\Omega). \end{split}$$

Variational analysis will reveal that either subset of the solution, (ω_1, u_2, P_3) or (P_0, u_1, ω_2) , weakly solves the rotation form of the Navier-Stokes equations; it is a **dual-field** system.

Questions : () : Is it conservative? () : How to reduce the computational cost? It is a huge non-linear system

	Conservative weak formulation			References
00000	00000	0000000	00000000	

Given $\boldsymbol{f} \in [L^2(\Omega)]^3$, seek $(P_0, \boldsymbol{u}_1, \boldsymbol{\omega}_2) \in H^1(\Omega) \times H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega)$ and $(\boldsymbol{\omega}_1, \boldsymbol{u}_2, P_3) \in H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega) \times L^2(\Omega)$ such that

$$\begin{split} \left\langle \frac{\partial \boldsymbol{u}_{1}}{\partial t}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} + \left\langle \boldsymbol{\omega}_{1} \times \boldsymbol{u}_{1}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} + \nu \left\langle \boldsymbol{\omega}_{2}, \nabla \times \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} + \left\langle \nabla P_{0}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} = \left\langle \boldsymbol{f}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} & \forall \boldsymbol{\epsilon}_{1} \in H(\operatorname{curl}; \Omega), \\ \left\langle \nabla \times \boldsymbol{u}_{1}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} - \left\langle \boldsymbol{\omega}_{2}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{2} \in H(\operatorname{div}; \Omega), \\ \left\langle \boldsymbol{u}_{1}, \nabla \boldsymbol{\epsilon}_{0} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{0} \in H^{1}(\Omega), \\ \left\langle \frac{\partial \boldsymbol{u}_{2}}{\partial t}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} + \left\langle \boldsymbol{\omega}_{2} \times \boldsymbol{u}_{2}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} + \nu \left\langle \nabla \times \boldsymbol{\omega}_{1}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} - \left\langle P_{3}, \nabla \cdot \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} = \left\langle \boldsymbol{f}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} & \forall \boldsymbol{\epsilon}_{2} \in H(\operatorname{div}; \Omega), \\ \left\langle \boldsymbol{u}_{2}, \nabla \times \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} - \left\langle \boldsymbol{\omega}_{1}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{1} \in H(\operatorname{curl}; \Omega), \\ - \left\langle \nabla \cdot \boldsymbol{u}_{2}, \boldsymbol{\epsilon}_{3} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{3} \in L^{2}(\Omega). \end{split}$$

Variational analysis will reveal that either subset of the solution, (ω_1, u_2, P_3) or (P_0, u_1, ω_2) , weakly solves the rotation form of the Navier-Stokes equations; it is a **dual-field** system.

Questions : () : Is it conservative? () : How to reduce the computational cost? It is a huge non-linear system

	Conservative weak formulation			References
00000	00000	0000000	00000000	

Given $\boldsymbol{f} \in [L^2(\Omega)]^3$, seek $(P_0, \boldsymbol{u}_1, \boldsymbol{\omega}_2) \in H^1(\Omega) \times H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega)$ and $(\boldsymbol{\omega}_1, \boldsymbol{u}_2, P_3) \in H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega) \times L^2(\Omega)$ such that

$$\begin{split} \left\langle \frac{\partial \boldsymbol{u}_{1}}{\partial t}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} + \left\langle \boldsymbol{\omega}_{1} \times \boldsymbol{u}_{1}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} + \nu \left\langle \boldsymbol{\omega}_{2}, \nabla \times \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} + \left\langle \nabla P_{0}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} = \left\langle \boldsymbol{f}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} & \forall \boldsymbol{\epsilon}_{1} \in H(\operatorname{curl}; \Omega), \\ \left\langle \nabla \times \boldsymbol{u}_{1}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} - \left\langle \boldsymbol{\omega}_{2}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{2} \in H(\operatorname{div}; \Omega), \\ \left\langle \boldsymbol{u}_{1}, \nabla \boldsymbol{\epsilon}_{0} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{0} \in H^{1}(\Omega), \\ \left\langle \frac{\partial \boldsymbol{u}_{2}}{\partial t}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} + \left\langle \boldsymbol{\omega}_{2} \times \boldsymbol{u}_{2}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} + \nu \left\langle \nabla \times \boldsymbol{\omega}_{1}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} - \left\langle P_{3}, \nabla \cdot \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} = \left\langle \boldsymbol{f}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} & \forall \boldsymbol{\epsilon}_{2} \in H(\operatorname{div}; \Omega), \\ \left\langle \boldsymbol{u}_{2}, \nabla \times \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} - \left\langle \boldsymbol{\omega}_{1}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{1} \in H(\operatorname{curl}; \Omega), \\ \left\langle \nabla \cdot \boldsymbol{u}_{2}, \boldsymbol{\epsilon}_{3} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{3} \in L^{2}(\Omega). \end{split}$$

Variational analysis will reveal that either subset of the solution, $(\boldsymbol{\omega}_1, \boldsymbol{u}_2, P_3)$ or $(P_0, \boldsymbol{u}_1, \boldsymbol{\omega}_2)$, weakly solves the rotation form of the Navier-Stokes equations; it is a *dual-field* system.

 $\begin{array}{l} Questions:\\ \bigcirc: \text{Is it conservative?}\\ \bigcirc: \text{How to reduce the computational cost? It is a huge non-linear system.} \end{array}$

	Conservative weak formulation			References
00000	00000	0000000	00000000	

Given $\boldsymbol{f} \in [L^2(\Omega)]^3$, seek $(P_0, \boldsymbol{u}_1, \boldsymbol{\omega}_2) \in H^1(\Omega) \times H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega)$ and $(\boldsymbol{\omega}_1, \boldsymbol{u}_2, P_3) \in H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega) \times L^2(\Omega)$ such that

$$\begin{split} \left\langle \frac{\partial \boldsymbol{u}_{1}}{\partial t}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} &+ \left\langle \boldsymbol{\omega}_{1} \times \boldsymbol{u}_{1}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} + \nu \left\langle \boldsymbol{\omega}_{2}, \nabla \times \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} + \left\langle \nabla P_{0}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} = \left\langle \boldsymbol{f}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} & \forall \boldsymbol{\epsilon}_{1} \in H(\operatorname{curl}; \Omega), \\ \left\langle \nabla \times \boldsymbol{u}_{1}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} - \left\langle \boldsymbol{\omega}_{2}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{2} \in H(\operatorname{div}; \Omega), \\ \left\langle \boldsymbol{u}_{1}, \nabla \boldsymbol{\epsilon}_{0} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{0} \in H^{1}(\Omega), \\ \left\langle \frac{\partial \boldsymbol{u}_{2}}{\partial t}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} + \left\langle \boldsymbol{\omega}_{2} \times \boldsymbol{u}_{2}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} + \nu \left\langle \nabla \times \boldsymbol{\omega}_{1}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} - \left\langle P_{3}, \nabla \cdot \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} = \left\langle \boldsymbol{f}, \boldsymbol{\epsilon}_{2} \right\rangle_{\Omega} & \forall \boldsymbol{\epsilon}_{2} \in H(\operatorname{div}; \Omega), \\ \left\langle \boldsymbol{u}_{2}, \nabla \times \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} - \left\langle \boldsymbol{\omega}_{1}, \boldsymbol{\epsilon}_{1} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{1} \in H(\operatorname{curl}; \Omega), \\ \left\langle \nabla \cdot \boldsymbol{u}_{2}, \boldsymbol{\epsilon}_{3} \right\rangle_{\Omega} = 0 & \forall \boldsymbol{\epsilon}_{3} \in L^{2}(\Omega). \end{split}$$

Variational analysis will reveal that either subset of the solution, $(\boldsymbol{\omega}_1, \boldsymbol{u}_2, P_3)$ or $(P_0, \boldsymbol{u}_1, \boldsymbol{\omega}_2)$, weakly solves the rotation form of the Navier-Stokes equations; it is a *dual-field* system.

 $\begin{array}{l} Questions:\\ \bigcirc: \text{ Is it conservative?}\\ \bigcirc: \text{How to reduce the computational cost? It is a huge non-linear system.} \end{array}$

	Conservative weak formulation			References	
00000	00000	000000	00000000		
Conservation and dissipation properties					

Mass conservation

We have restricted u_2 to space $H(\Omega; \operatorname{div})$, the *de Rham complex* and the constraint

$$\langle \nabla \cdot \boldsymbol{u}_2, \epsilon_3 \rangle_{\Omega} = 0, \ \forall \epsilon_3 \in L^2(\Omega)$$

ensure that the relation

$$\boldsymbol{u}_2 \in H(\operatorname{div}; \Omega) \xrightarrow{\nabla} 0 \in L^2(\Omega)$$

is exact. Therefore, mass conservation is satisfied for velocity u_2 .

Mass conservation is only weakly satisfied for $u_1 \in H(\operatorname{curl}; \Omega)$.

	Conservative weak formulation			References	
00000	0000	000000	00000000		
Conservation and dissipation properties					

Mass conservation

We have restricted u_2 to space $H(\Omega; \operatorname{div})$, the *de Rham complex* and the constraint

$$\langle \nabla \cdot \boldsymbol{u}_2, \epsilon_3 \rangle_{\Omega} = 0, \ \forall \epsilon_3 \in L^2(\Omega)$$

ensure that the relation

$$\boldsymbol{u}_2 \in H(\operatorname{div};\Omega) \xrightarrow{\nabla} 0 \in L^2(\Omega)$$

is exact. Therefore, mass conservation is satisfied for velocity u_2 .

Mass conservation is only weakly satisfied for $u_1 \in H(\operatorname{curl}; \Omega)$.

	Conservative weak formulation			References
00000	00000	000000	00000000	
Conservation and dissipation properties				

Given a conservative external body force, we set $\nu = 0$. Kinetic energy conservation is equivalent to

$$\frac{\mathrm{d}\mathcal{K}_1}{\mathrm{d}t} = \left\langle \frac{\partial \boldsymbol{u}_1}{\partial t}, \boldsymbol{u}_1 \right\rangle_{\Omega} = 0, \quad \frac{\mathrm{d}\mathcal{K}_2}{\mathrm{d}t} = \left\langle \frac{\partial \boldsymbol{u}_2}{\partial t}, \boldsymbol{u}_2 \right\rangle_{\Omega} = 0.$$

If we select ϵ_1 to be $u_1 \in H(\operatorname{curl}; \Omega)$ in the first evolution equation, we get

$$\left\langle \frac{\partial u_1}{\partial t}, u_1 \right\rangle_{\Omega} + \overline{\langle u_1 \times u_1, u_1 \rangle_{\Omega}} + \overline{\langle \nabla P_0, u_1 \rangle_{\Omega}} = \left\langle \frac{\partial u_1}{\partial t}, u_1 \right\rangle_{\Omega} = 0$$

The second term vanishes because of the fact that the cross product of two vectors is perpendicular to both vectors, i.e.,

(4)
$$\langle \boldsymbol{a} \times \boldsymbol{b}, \boldsymbol{a} \rangle_{\Omega} = \langle \boldsymbol{a} \times \boldsymbol{b}, \boldsymbol{b} \rangle_{\Omega} \equiv 0$$

This relation will be used repeatedly in this work. From relation

$$\langle \boldsymbol{u}_1, \nabla \epsilon_0 \rangle_{\Omega} = 0, \ \forall \epsilon_0 \in H^1(\Omega),$$

It follows that $\langle \nabla P_0, \boldsymbol{u}_1 \rangle_{\Omega} = 0$ because $P_0 \in H^1(\Omega)$.

Similarly, we can get

$$\left\langle \frac{\partial u_2}{\partial t}, u_2 \right\rangle_{\Omega} + \overline{\langle \omega_2 \times u_2, u_2 \rangle_{\Omega}} - \overline{\langle P_3, \nabla \cdot u_2 \rangle_{\Omega}} = \left\langle \frac{\partial u_2}{\partial t}, u_2 \right\rangle_{\Omega} = 0$$

	Conservative weak formulation			References
00000	00000	000000	00000000	
Conservation and dissipation properties				

Given a conservative external body force, we set $\nu = 0$. Kinetic energy conservation is equivalent to

$$\frac{\mathrm{d}\mathcal{K}_1}{\mathrm{d}t} = \left\langle \frac{\partial \boldsymbol{u}_1}{\partial t}, \boldsymbol{u}_1 \right\rangle_{\Omega} = 0, \quad \frac{\mathrm{d}\mathcal{K}_2}{\mathrm{d}t} = \left\langle \frac{\partial \boldsymbol{u}_2}{\partial t}, \boldsymbol{u}_2 \right\rangle_{\Omega} = 0.$$

If we select $\boldsymbol{\epsilon}_1$ to be $\boldsymbol{u}_1 \in H(\operatorname{curl}; \Omega)$ in the first evolution equation, we get

$$\left\langle \frac{\partial \boldsymbol{u}_1}{\partial t}, \boldsymbol{u}_1 \right\rangle_{\Omega} + \overline{\langle \boldsymbol{\omega}_1 \times \boldsymbol{u}_{1}, \boldsymbol{u}_1 \rangle_{\Omega}} + \overline{\langle \nabla P_0, \boldsymbol{u}_1 \rangle_{\Omega}} = \left\langle \frac{\partial \boldsymbol{u}_1}{\partial t}, \boldsymbol{u}_1 \right\rangle_{\Omega} = 0$$

The second term vanishes because of the fact that the cross product of two vectors is perpendicular to both vectors, i.e.,

(4)
$$\langle \boldsymbol{a} \times \boldsymbol{b}, \boldsymbol{a} \rangle_{\Omega} = \langle \boldsymbol{a} \times \boldsymbol{b}, \boldsymbol{b} \rangle_{\Omega} \equiv 0$$

This relation will be used repeatedly in this work. From relation

$$\langle \boldsymbol{u}_1, \nabla \epsilon_0 \rangle_{\Omega} = 0, \ \forall \epsilon_0 \in H^1(\Omega),$$

It follows that $\langle \nabla P_0, \boldsymbol{u}_1 \rangle_{\Omega} = 0$ because $P_0 \in H^1(\Omega)$.

Similarly, we can get

$$\left\langle \frac{\partial u_2}{\partial t}, u_2 \right\rangle_{\Omega} + \overline{\langle \boldsymbol{\omega}_2 \times \boldsymbol{u}_2, \boldsymbol{u}_2 \rangle_{\Omega}} - \overline{\langle P_3, \nabla \cdot \boldsymbol{u}_2 \rangle_{\Omega}} = \left\langle \frac{\partial u_2}{\partial t}, \boldsymbol{u}_2 \right\rangle_{\Omega} = 0$$

	Conservative weak formulation			References
00000	00000	000000	00000000	
Conservation and dissipation properties				

Given a conservative external body force, we set $\nu = 0$. Kinetic energy conservation is equivalent to

$$\frac{\mathrm{d}\mathcal{K}_1}{\mathrm{d}t} = \left\langle \frac{\partial \boldsymbol{u}_1}{\partial t}, \boldsymbol{u}_1 \right\rangle_{\Omega} = 0, \quad \frac{\mathrm{d}\mathcal{K}_2}{\mathrm{d}t} = \left\langle \frac{\partial \boldsymbol{u}_2}{\partial t}, \boldsymbol{u}_2 \right\rangle_{\Omega} = 0.$$

If we select $\boldsymbol{\epsilon}_1$ to be $\boldsymbol{u}_1 \in H(\operatorname{curl}; \Omega)$ in the first evolution equation, we get

$$\left\langle \frac{\partial \boldsymbol{u}_1}{\partial t}, \boldsymbol{u}_1 \right\rangle_{\Omega} + \overline{\langle \boldsymbol{\omega}_1 \times \boldsymbol{u}_1, \boldsymbol{u}_1 \rangle_{\Omega}} + \overline{\langle \nabla P_0, \boldsymbol{u}_1 \rangle_{\Omega}} = \left\langle \frac{\partial \boldsymbol{u}_1}{\partial t}, \boldsymbol{u}_1 \right\rangle_{\Omega} = 0$$

The second term vanishes because of the fact that the cross product of two vectors is perpendicular to both vectors, i.e.,

(4)
$$\langle \boldsymbol{a} \times \boldsymbol{b}, \boldsymbol{a} \rangle_{\Omega} = \langle \boldsymbol{a} \times \boldsymbol{b}, \boldsymbol{b} \rangle_{\Omega} \equiv 0$$

This relation will be used repeatedly in this work. From relation

$$\langle \boldsymbol{u}_1, \nabla \epsilon_0 \rangle_{\Omega} = 0, \ \forall \epsilon_0 \in H^1(\Omega),$$

It follows that $\langle \nabla P_0, \boldsymbol{u}_1 \rangle_{\Omega} = 0$ because $P_0 \in H^1(\Omega)$.

Similarly, we can get

$$\left\langle \frac{\partial u_2}{\partial t}, u_2 \right\rangle_{\Omega} + \overline{\langle u_2 \times u_2, u_2 \rangle_{\Omega}} - \overline{\langle P_3, \nabla \cdot u_2 \rangle_{\Omega}} = \left\langle \frac{\partial u_2}{\partial t}, u_2 \right\rangle_{\Omega} = 0$$

	Conservative weak formulation			References
00000	00000	000000	00000000	
Conservation and dissipation properties				

Given a conservative external body force, we set $\nu = 0$. Kinetic energy conservation is equivalent to

$$\frac{\mathrm{d}\mathcal{K}_1}{\mathrm{d}t} = \left\langle \frac{\partial \boldsymbol{u}_1}{\partial t}, \boldsymbol{u}_1 \right\rangle_{\Omega} = 0, \quad \frac{\mathrm{d}\mathcal{K}_2}{\mathrm{d}t} = \left\langle \frac{\partial \boldsymbol{u}_2}{\partial t}, \boldsymbol{u}_2 \right\rangle_{\Omega} = 0.$$

If we select $\boldsymbol{\epsilon}_1$ to be $\boldsymbol{u}_1 \in H(\operatorname{curl}; \Omega)$ in the first evolution equation, we get

$$\left\langle \frac{\partial \boldsymbol{u}_1}{\partial t}, \boldsymbol{u}_1 \right\rangle_{\Omega} + \overline{\langle \boldsymbol{\omega}_1 \times \boldsymbol{u}_1, \boldsymbol{u}_1 \rangle_{\Omega}} + \overline{\langle \nabla P_0, \boldsymbol{u}_1 \rangle_{\Omega}} = \left\langle \frac{\partial \boldsymbol{u}_1}{\partial t}, \boldsymbol{u}_1 \right\rangle_{\Omega} = 0.$$

The second term vanishes because of the fact that the cross product of two vectors is perpendicular to both vectors, i.e.,

(4)
$$\langle \boldsymbol{a} \times \boldsymbol{b}, \boldsymbol{a} \rangle_{\Omega} = \langle \boldsymbol{a} \times \boldsymbol{b}, \boldsymbol{b} \rangle_{\Omega} \equiv 0$$

This relation will be used repeatedly in this work. From relation

$$\langle \boldsymbol{u}_1, \nabla \epsilon_0 \rangle_{\Omega} = 0, \ \forall \epsilon_0 \in H^1(\Omega),$$

It follows that $\langle \nabla P_0, \boldsymbol{u}_1 \rangle_{\Omega} = 0$ because $P_0 \in H^1(\Omega)$.

Similarly, we can get

$$\left\langle \frac{\partial \boldsymbol{u}_2}{\partial t}, \boldsymbol{u}_2 \right\rangle_{\Omega} + \overline{\langle \boldsymbol{\omega}_2 \times \boldsymbol{u}_2, \boldsymbol{u}_2 \rangle_{\Omega}} - \overline{\langle P_3, \nabla \boldsymbol{u}_2 \rangle_{\Omega}} = \left\langle \frac{\partial \boldsymbol{u}_2}{\partial t}, \boldsymbol{u}_2 \right\rangle_{\Omega} = 0$$

	Conservative weak formulation			References	
00000	00000	0000000	00000000		
Conservation and dissipation properties					

Helicity conservation

Given a conservative external body force, if $\nu = 0$, helcity conservation is equivalent to

$$\begin{split} \frac{\mathrm{d}\mathcal{H}_{1}}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \boldsymbol{u}_{1}, \boldsymbol{\omega}_{1} \right\rangle_{\Omega} = \left\langle \frac{\partial \boldsymbol{u}_{1}}{\partial t}, \boldsymbol{\omega}_{1} \right\rangle_{\Omega} + \left\langle \boldsymbol{u}_{1}, \frac{\partial \boldsymbol{\omega}_{1}}{\partial t} \right\rangle_{\Omega} = 0, \\ \frac{\mathrm{d}\mathcal{H}_{2}}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \boldsymbol{u}_{2}, \boldsymbol{\omega}_{2} \right\rangle_{\Omega} = \left\langle \frac{\partial \boldsymbol{u}_{2}}{\partial t}, \boldsymbol{\omega}_{2} \right\rangle_{\Omega} + \left\langle \boldsymbol{u}_{2}, \frac{\partial \boldsymbol{\omega}_{2}}{\partial t} \right\rangle_{\Omega} = 0. \end{split}$$

From the two evolution equations, one can derive

$$\left\langle \frac{\partial u_1}{\partial t}, \omega_1 \right\rangle_{\Omega} + \overline{\langle \omega_1 \times u_1, \omega_1 \rangle_{\Omega}} + \overline{\langle \nabla P_0, \omega_1 \rangle_{\Omega}} = \left\langle \frac{\partial u_1}{\partial t}, \omega_1 \right\rangle_{\Omega} = 0.$$

$$\left\langle \frac{\partial \omega_1}{\partial t}, u_1 \right\rangle_{\Omega} + \overline{\langle \omega_2 \times u_2, \nabla \times u_1 \rangle_{\Omega}} - \overline{\langle P_3, \nabla \nabla \nabla \times u_1 \rangle_{\Omega}} = \left\langle \frac{\partial \omega_1}{\partial t}, u_1 \right\rangle_{\Omega} = 0.$$

These two equations conclude the proof for $\frac{dH_1}{dt} = 0$. And one can find

$$\mathcal{H}_2 = \langle oldsymbol{u}_2, oldsymbol{\omega}_2
angle_\Omega = \langle oldsymbol{u}_2,
abla imes oldsymbol{u}_1
angle_\Omega = \langle oldsymbol{u}_1, oldsymbol{u}_1
angle_\Omega = \mathcal{H}_1$$

for the dual-field system. Thus $\frac{d\mathcal{H}}{dt}$

	Conservative weak formulation			References	
00000	00000	0000000	00000000		
Conservation and dissipation properties					

Helicity conservation

Given a conservative external body force, if $\nu = 0$, helcity conservation is equivalent to

$$\begin{split} \frac{\mathrm{d}\mathcal{H}_{1}}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \boldsymbol{u}_{1}, \boldsymbol{\omega}_{1} \right\rangle_{\Omega} = \left\langle \frac{\partial \boldsymbol{u}_{1}}{\partial t}, \boldsymbol{\omega}_{1} \right\rangle_{\Omega} + \left\langle \boldsymbol{u}_{1}, \frac{\partial \boldsymbol{\omega}_{1}}{\partial t} \right\rangle_{\Omega} = 0, \\ \frac{\mathrm{d}\mathcal{H}_{2}}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \boldsymbol{u}_{2}, \boldsymbol{\omega}_{2} \right\rangle_{\Omega} = \left\langle \frac{\partial \boldsymbol{u}_{2}}{\partial t}, \boldsymbol{\omega}_{2} \right\rangle_{\Omega} + \left\langle \boldsymbol{u}_{2}, \frac{\partial \boldsymbol{\omega}_{2}}{\partial t} \right\rangle_{\Omega} = 0. \end{split}$$

From the two evolution equations, one can derive

$$\left\langle \frac{\partial \boldsymbol{u}_1}{\partial t}, \boldsymbol{\omega}_1 \right\rangle_{\Omega} + \overline{\langle \boldsymbol{\omega}_1 \times \boldsymbol{u}_1, \boldsymbol{\omega}_1 \rangle_{\Omega}} + \overline{\langle \nabla P_0, \boldsymbol{\omega}_1 \rangle_{\Omega}} = \left\langle \frac{\partial \boldsymbol{u}_1}{\partial t}, \boldsymbol{\omega}_1 \right\rangle_{\Omega} = 0.$$

$$\left\langle \frac{\partial \boldsymbol{\omega}_1}{\partial t}, \boldsymbol{u}_1 \right\rangle_{\Omega} + \overline{\langle \boldsymbol{\omega}_2 \times \boldsymbol{u}_2, \nabla \times \boldsymbol{u}_1 \rangle_{\Omega}} - \overline{\langle P_3, \nabla \nabla \times \boldsymbol{u}_1 \rangle_{\Omega}} = \left\langle \frac{\partial \boldsymbol{\omega}_1}{\partial t}, \boldsymbol{u}_1 \right\rangle_{\Omega} = 0.$$
These two equations conclude the proof for $\frac{d\mathcal{H}_1}{dt} = 0.$ And one can find
$$\mathcal{H}_2 = \langle \boldsymbol{u}_2, \boldsymbol{\omega}_2 \rangle_{\Omega} = \langle \boldsymbol{u}_2, \nabla \times \boldsymbol{u}_1 \rangle_{\Omega} = \langle \boldsymbol{\omega}_1, \boldsymbol{u}_1 \rangle_{\Omega} = \mathcal{H}_1$$
for the dual-field system. Thus $\frac{d\mathcal{H}_1}{dt} = \frac{d\mathcal{H}_2}{dt} = 0.$

	Conservative weak formulation			References	
00000	00000	0000000	00000000		
Conservation and dissipation properties					

Helicity conservation

Given a conservative external body force, if $\nu = 0$, helcity conservation is equivalent to

$$\begin{split} \frac{\mathrm{d}\mathcal{H}_{1}}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \boldsymbol{u}_{1}, \boldsymbol{\omega}_{1} \right\rangle_{\Omega} = \left\langle \frac{\partial \boldsymbol{u}_{1}}{\partial t}, \boldsymbol{\omega}_{1} \right\rangle_{\Omega} + \left\langle \boldsymbol{u}_{1}, \frac{\partial \boldsymbol{\omega}_{1}}{\partial t} \right\rangle_{\Omega} = 0, \\ \frac{\mathrm{d}\mathcal{H}_{2}}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \boldsymbol{u}_{2}, \boldsymbol{\omega}_{2} \right\rangle_{\Omega} = \left\langle \frac{\partial \boldsymbol{u}_{2}}{\partial t}, \boldsymbol{\omega}_{2} \right\rangle_{\Omega} + \left\langle \boldsymbol{u}_{2}, \frac{\partial \boldsymbol{\omega}_{2}}{\partial t} \right\rangle_{\Omega} = 0. \end{split}$$

From the two evolution equations, one can derive

$$\left\langle \frac{\partial \boldsymbol{u}_1}{\partial t}, \boldsymbol{\omega}_1 \right\rangle_{\Omega} + \overline{\langle \boldsymbol{\omega}_1 \times \boldsymbol{u}_1, \boldsymbol{\omega}_1 \rangle_{\Omega}} + \overline{\langle \nabla P_0, \boldsymbol{\omega}_1 \rangle_{\Omega}} = \left\langle \frac{\partial \boldsymbol{u}_1}{\partial t}, \boldsymbol{\omega}_1 \right\rangle_{\Omega} = 0.$$

$$\left\langle \frac{\partial \boldsymbol{\omega}_1}{\partial t}, \boldsymbol{u}_1 \right\rangle_{\Omega} + \overline{\langle \boldsymbol{\omega}_2 \times \boldsymbol{u}_2, \nabla \times \boldsymbol{u}_1 \rangle_{\Omega}} - \overline{\langle P_3, \nabla \nabla \nabla \times \boldsymbol{u}_1 \rangle_{\Omega}} = \left\langle \frac{\partial \boldsymbol{\omega}_1}{\partial t}, \boldsymbol{u}_1 \right\rangle_{\Omega} = 0.$$

These two equations conclude the proof for $\frac{\mathrm{d}\mathcal{H}_1}{\mathrm{d}t} = 0$. And one can find

$$\mathcal{H}_2 = \langle oldsymbol{u}_2, oldsymbol{\omega}_2
angle_\Omega = \langle oldsymbol{u}_2,
abla imes oldsymbol{u}_1
angle_\Omega = \langle oldsymbol{\omega}_1, oldsymbol{u}_1
angle_\Omega = \mathcal{H}_1$$

for the dual-field system. Thus $\frac{\mathrm{d}\mathcal{H}_1}{\mathrm{d}t} = \frac{\mathrm{d}\mathcal{H}_2}{\mathrm{d}t} = 0.$

	Conservative weak formulation			References	
00000	00000	000000	00000000		
Conservation and dissipation properties					

Kinetic energy and helicity dissipation

In viscous case, i.e. $\nu \neq 0$, if we repeat above analysis, the viscous terms remain. We get :

$$\begin{aligned} \frac{\mathrm{d}\mathcal{K}_{1}}{\mathrm{d}t} &= \left\langle \frac{\partial \boldsymbol{u}_{1}}{\partial t}, \boldsymbol{u}_{1} \right\rangle_{\Omega} = -\nu \left\langle \boldsymbol{\omega}_{2}, \nabla \times \boldsymbol{u}_{1} \right\rangle_{\Omega} = -\nu \left\langle \boldsymbol{\omega}_{2}, \boldsymbol{\omega}_{2} \right\rangle_{\Omega} = -2\nu \mathcal{E}_{2} \leq 0, \\ \frac{\mathrm{d}\mathcal{K}_{2}}{\mathrm{d}t} &= \left\langle \frac{\partial \boldsymbol{u}_{2}}{\partial t}, \boldsymbol{u}_{2} \right\rangle_{\Omega} = -\nu \left\langle \nabla \times \boldsymbol{\omega}_{1}, \boldsymbol{u}_{2} \right\rangle_{\Omega} - \nu \left\langle \boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{1} \right\rangle_{\Omega} = -2\nu \mathcal{E}_{1} \leq 0, \end{aligned}$$

which is in agreement with the dissipation rate for the strong form.

As for helicity, we get

$$\frac{\partial \mathcal{H}_1}{\partial t} = \frac{\partial \mathcal{H}_2}{\partial t} = -2\nu \left\langle \boldsymbol{\omega}_2, \nabla \times \boldsymbol{\omega}_1 \right\rangle_{\Omega},$$

which is consistent with the relation of the strong formulation,

	Conservative weak formulation			References
00000	00000	000000	00000000	
Conservation and dissipation	properties			

Kinetic energy and helicity dissipation

In viscous case, i.e. $\nu \neq 0$, if we repeat above analysis, the viscous terms remain. We get :

$$\frac{\mathrm{d}\mathcal{K}_{1}}{\mathrm{d}t} = \left\langle \frac{\partial \boldsymbol{u}_{1}}{\partial t}, \boldsymbol{u}_{1} \right\rangle_{\Omega} = -\nu \left\langle \boldsymbol{\omega}_{2}, \nabla \times \boldsymbol{u}_{1} \right\rangle_{\Omega} = -\nu \left\langle \boldsymbol{\omega}_{2}, \boldsymbol{\omega}_{2} \right\rangle_{\Omega} = -2\nu \mathcal{E}_{2} \leq 0,$$
$$\frac{\mathrm{d}\mathcal{K}_{2}}{\mathrm{d}t} = \left\langle \frac{\partial \boldsymbol{u}_{2}}{\partial t}, \boldsymbol{u}_{2} \right\rangle_{\Omega} = -\nu \left\langle \nabla \times \boldsymbol{\omega}_{1}, \boldsymbol{u}_{2} \right\rangle_{\Omega} - \nu \left\langle \boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{1} \right\rangle_{\Omega} = -2\nu \mathcal{E}_{1} \leq 0,$$

which is in agreement with the dissipation rate for the strong form.

As for helicity, we get

$$\frac{\partial \mathcal{H}_1}{\partial t} = \frac{\partial \mathcal{H}_2}{\partial t} = -2\nu \left\langle \boldsymbol{\omega}_2, \nabla \times \boldsymbol{\omega}_1 \right\rangle_{\Omega},$$

which is consistent with the relation of the strong formulation,

		Discretization		References
00000	00000	000000	00000000	
Temporal discretization				

We use a lowest order Gauss integrator as the time integrator. For example, if we apply the integrator to an ordinary differential equation of the form

$$\frac{\mathrm{d}f(t)}{\mathrm{d}t} = h\left(f(t), t\right)$$

at a time step, for example from time instant t^{k-1} to time instant t^k , we obtain

$$\frac{f^k - f^{k-1}}{\Delta t} = h\left(f(t^{k-1} + \frac{\Delta t}{2}), t^{k-1} + \frac{\Delta t}{2}\right),$$

where $\Delta t = t^k - t^{k-1}$, $f^k = f(t^k)$.

Additionally, we will use the following approximation, namely midpoint rule

$$f^{k-\frac{1}{2}} = f(t^{k-1} + \frac{\Delta t}{2}) := \frac{f^{k-1} + f^k}{2},$$

at the discrete level.

		Discretization		References
00000	00000	000000	00000000	
Temporal discretization				

We use a lowest order Gauss integrator as the time integrator. For example, if we apply the integrator to an ordinary differential equation of the form

$$\frac{\mathrm{d}f(t)}{\mathrm{d}t} = h\left(f(t), t\right)$$

at a time step, for example from time instant t^{k-1} to time instant t^k , we obtain

$$\frac{f^k - f^{k-1}}{\Delta t} = h\left(f(t^{k-1} + \frac{\Delta t}{2}), t^{k-1} + \frac{\Delta t}{2}\right),$$

where $\Delta t = t^{k} - t^{k-1}, f^{k} = f(t^{k}).$

Additionally, we will use the following approximation, namely midpoint rule

$$f^{k-\frac{1}{2}} = f(t^{k-1} + \frac{\Delta t}{2}) := \frac{f^{k-1} + f^k}{2},$$

at the discrete level.

		Discretization		References
00000	00000	000000	00000000	
Temporal discretization				

Figure – An illustration of the proposed staggered temporal scheme. The iterations proceed in a sequence : $\hat{s}_0 \rightarrow S_1 \rightarrow \hat{S}_1 \rightarrow S_2 \rightarrow \hat{S}_2 \rightarrow \cdots$.

		Discretization		References
00000	00000	000000	00000000	
Temporal discretization				

At, for example, kth integer time step S_k : Given $\left(\boldsymbol{\omega}_1^{k-1}, \boldsymbol{u}_2^{k-1}, \boldsymbol{f}^{k-\frac{1}{2}}, \boldsymbol{\omega}_2^{k-\frac{1}{2}}\right) \in H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega) \times H(\operatorname{div}; \Omega)$ $\left[L^2(\Omega)\right]^3 \times H(\operatorname{div};\Omega), \operatorname{find} \left(\boldsymbol{\omega}_1^k, \boldsymbol{u}_2^k, P_3^{k-\frac{1}{2}}\right) \in H(\operatorname{curl};\Omega) \times H(\operatorname{div};\Omega) \times L^2(\Omega) \text{ such that}$ $\begin{cases} \left\langle \frac{\boldsymbol{u}_{2}^{k}-\boldsymbol{u}_{2}^{k-1}}{\Delta t},\boldsymbol{\epsilon}_{2}\right\rangle_{\Omega}+\left\langle \boldsymbol{\omega}_{2}^{k-\frac{1}{2}}\times\frac{\boldsymbol{u}_{2}^{k-1}+\boldsymbol{u}_{2}^{k}}{2},\boldsymbol{\epsilon}_{2}\right\rangle_{\Omega}\\ +\nu\left\langle \nabla\times\frac{\boldsymbol{\omega}_{1}^{k-1}+\boldsymbol{\omega}_{1}^{k}}{2},\boldsymbol{\epsilon}_{2}\right\rangle_{\Omega}-\left\langle P_{3}^{k-\frac{1}{2}},\nabla\cdot\boldsymbol{\epsilon}_{2}\right\rangle_{\Omega}=\left\langle \boldsymbol{f}^{k-\frac{1}{2}},\boldsymbol{\epsilon}_{2}\right\rangle_{\Omega}\quad\forall\boldsymbol{\epsilon}_{2}\in H(\operatorname{div},\Omega),\\ \left\langle \boldsymbol{u}_{2}^{k},\nabla\times\boldsymbol{\epsilon}_{1}\right\rangle_{\Omega}-\left\langle \boldsymbol{\omega}_{1}^{k},\boldsymbol{\epsilon}_{1}\right\rangle_{\Omega}=0\qquad\qquad\qquad\forall\boldsymbol{\epsilon}_{1}\in H(\operatorname{curl};\Omega),\\ -\left\langle \nabla\cdot\boldsymbol{u}_{2}^{k},\boldsymbol{\epsilon}_{3}\right\rangle_{\Omega}=0\qquad\qquad\qquad\forall\boldsymbol{\epsilon}_{3}\in L^{2}(\Omega).\end{cases}$

where $\omega_2^{k-\frac{1}{2}}$ is "borrowed" from the other time step sequence.

		Discretization		References
00000	00000	0000000	00000000	
Temporal discretization				

At, for example, kth half-integer time step \hat{S}_k : Given $\left(\boldsymbol{u}_1^{k-\frac{1}{2}}, \boldsymbol{\omega}_2^{k-\frac{1}{2}}, \boldsymbol{f}^k, \boldsymbol{\omega}_1^k\right) \in H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega) \times H(\operatorname{div}; \Omega)$ $\left[L^2(\Omega)\right]^3 \times H(\operatorname{curl};\Omega), \operatorname{seek}\left(P_0^k, \boldsymbol{u}_1^{k+\frac{1}{2}}, \boldsymbol{\omega}_2^{k+\frac{1}{2}}\right) \in H^1(\Omega) \times H(\operatorname{curl};\Omega) \times H(\operatorname{div};\Omega) \text{ such that }$ $\begin{cases} \left\langle \frac{\boldsymbol{u}_{1}^{k+\frac{1}{2}}-\boldsymbol{u}_{1}^{k-\frac{1}{2}}}{\Delta t},\boldsymbol{\epsilon}_{1}\right\rangle_{\Omega}+\left\langle \boldsymbol{\omega}_{1}^{k}\times\frac{\boldsymbol{u}_{1}^{k-\frac{1}{2}}+\boldsymbol{u}_{1}^{k+\frac{1}{2}}}{2},\boldsymbol{\epsilon}_{1}\right\rangle_{\Omega} \\ +\nu\left\langle \frac{\boldsymbol{\omega}_{2}^{k-\frac{1}{2}}+\boldsymbol{\omega}_{2}^{k+\frac{1}{2}}}{2},\nabla\times\boldsymbol{\epsilon}_{1}\right\rangle_{\Omega}+\left\langle \nabla P_{0}^{k},\boldsymbol{\epsilon}_{1}\right\rangle_{\Omega}=\left\langle \boldsymbol{f}^{k},\boldsymbol{\epsilon}_{1}\right\rangle_{\Omega}\quad\forall\boldsymbol{\epsilon}_{1}\in H(\operatorname{curl};\Omega),\\ \left\langle \nabla\times\boldsymbol{u}_{1}^{k+\frac{1}{2}},\boldsymbol{\epsilon}_{2}\right\rangle_{\Omega}-\left\langle \boldsymbol{\omega}_{2}^{k+\frac{1}{2}},\boldsymbol{\epsilon}_{2}\right\rangle_{\Omega}=0\qquad\qquad\forall\boldsymbol{\epsilon}_{2}\in H(\operatorname{div};\Omega),\\ \left\langle \boldsymbol{u}_{1}^{k+\frac{1}{2}},\nabla\boldsymbol{\epsilon}_{0}\right\rangle_{\Omega}=0\qquad\qquad\forall\boldsymbol{\epsilon}_{0}\in H^{1}(\Omega),\end{cases}$

where $\boldsymbol{\omega}_1^k$ is "borrowed" from the other time step sequence.

		Discretization		References
00000	00000	0000000	00000000	
Temporal discretization				

Conservation properties after temporal discretization

 ${\it Mass\ conservation}$ is not influenced by the temporal discretization.

Givan a conservative external body force, when $\nu = 0$, one can find *kinetic energy conservation* is of the format :

$$\begin{split} \mathcal{K}_{1}^{k+\frac{1}{2}} &= \frac{1}{2} \left\langle \boldsymbol{u}_{1}^{k+\frac{1}{2}}, \boldsymbol{u}_{1}^{k+\frac{1}{2}} \right\rangle_{\Omega} = \frac{1}{2} \left\langle \boldsymbol{u}_{1}^{k-\frac{1}{2}}, \boldsymbol{u}_{1}^{k-\frac{1}{2}} \right\rangle_{\Omega} = \mathcal{K}_{1}^{k-\frac{1}{2}} \\ \mathcal{K}_{2}^{k} &= \frac{1}{2} \left\langle \boldsymbol{u}_{2}^{k}, \boldsymbol{u}_{2}^{k} \right\rangle_{\Omega} = \frac{1}{2} \left\langle \boldsymbol{u}_{2}^{k-1}, \boldsymbol{u}_{2}^{k-1} \right\rangle_{\Omega} = \mathcal{K}_{2}^{k-1} \end{split}$$

And *helicity conservation* becomes

$$\mathcal{H}_1^k = \left\langle \frac{u_1^{k-\frac{1}{2}} + u_1^{k-\frac{3}{2}}}{2}, \omega_1^{k-1} \right\rangle_{\Omega} = \left\langle u_1^k, \omega_1^k \right\rangle_{\Omega} = \left\langle u_2^k, \omega_2^k \right\rangle_{\Omega} = \left\langle u_2^k, \frac{\omega_2^{k-\frac{1}{2}} + \omega_2^{k+\frac{1}{2}}}{2} \right\rangle_{\Omega} = \mathcal{H}_2^k.$$

		Discretization		References
00000	00000	0000000	00000000	
Temporal discretization				

Conservation properties after temporal discretization

Mass conservation is not influenced by the temporal discretization.

Given a conservative external body force, when $\nu = 0$, one can find *kinetic energy conservation* is of the format :

$$\begin{split} \mathcal{K}_{1}^{k+\frac{1}{2}} &= \frac{1}{2} \left\langle \boldsymbol{u}_{1}^{k+\frac{1}{2}}, \boldsymbol{u}_{1}^{k+\frac{1}{2}} \right\rangle_{\Omega} = \frac{1}{2} \left\langle \boldsymbol{u}_{1}^{k-\frac{1}{2}}, \boldsymbol{u}_{1}^{k-\frac{1}{2}} \right\rangle_{\Omega} = \mathcal{K}_{1}^{k-\frac{1}{2}} \\ \mathcal{K}_{2}^{k} &= \frac{1}{2} \left\langle \boldsymbol{u}_{2}^{k}, \boldsymbol{u}_{2}^{k} \right\rangle_{\Omega} = \frac{1}{2} \left\langle \boldsymbol{u}_{2}^{k-1}, \boldsymbol{u}_{2}^{k-1} \right\rangle_{\Omega} = \mathcal{K}_{2}^{k-1} \end{split}$$

And *helicity conservation* becomes

$$\mathcal{H}_1^k = \left\langle \frac{\boldsymbol{u}_1^{k-\frac{1}{2}} + \boldsymbol{u}_1^{k-\frac{3}{2}}}{2}, \boldsymbol{\omega}_1^{k-1} \right\rangle_{\Omega} = \left\langle \boldsymbol{u}_1^k, \boldsymbol{\omega}_1^k \right\rangle_{\Omega} = \left\langle \boldsymbol{u}_2^k, \boldsymbol{\omega}_2^k \right\rangle_{\Omega} = \left\langle \boldsymbol{u}_2^k, \frac{\boldsymbol{\omega}_2^{k-\frac{1}{2}} + \boldsymbol{\omega}_2^{k+\frac{1}{2}}}{2} \right\rangle_{\Omega} = \mathcal{H}_2^k.$$

		Discretization		References
00000	00000	0000000	00000000	
Temporal discretization				

Dissipation properties after temporal discretization

Givan a conservative external body force, when $\nu \neq 0$, by repeating a forementioned analysis, one now can find that kinetic energy dissipates at the rate

$$\begin{split} \frac{\mathcal{K}_{1}^{k+\frac{1}{2}} - \mathcal{K}_{1}^{k-\frac{1}{2}}}{\Delta t} &= -\nu \left\langle \frac{\boldsymbol{\omega}_{2}^{k-\frac{1}{2}} + \boldsymbol{\omega}_{2}^{k+\frac{1}{2}}}{2}, \frac{\boldsymbol{\omega}_{2}^{k-\frac{1}{2}} + \boldsymbol{\omega}_{2}^{k+\frac{1}{2}}}{2} \right\rangle_{\Omega} = -2\nu \mathcal{E}_{2}^{k} \leq 0, \\ \frac{\mathcal{K}_{2}^{k} - \mathcal{K}_{2}^{k-1}}{\Delta t} &= -\nu \left\langle \frac{\boldsymbol{\omega}_{1}^{k-1} + \boldsymbol{\omega}_{1}^{k}}{2}, \frac{\boldsymbol{\omega}_{1}^{k-1} + \boldsymbol{\omega}_{1}^{k}}{2} \right\rangle_{\Omega} = -2\nu \mathcal{E}_{1}^{k+\frac{1}{2}} \leq 0. \end{split}$$

And helicity dissipates or generates at the rate :

$$\frac{\mathcal{H}_1^k - \mathcal{H}_1^{k-1}}{\Delta t} = \frac{\mathcal{H}_2^k - \mathcal{H}_2^{k-1}}{\Delta t} = -\nu \left\langle \nabla \times \omega_1^{k-\frac{1}{2}}, \omega_2^{k-\frac{1}{2}} \right\rangle_{\Omega} - \nu \frac{\left\langle \omega_2^k, \nabla \times \omega_1^k \right\rangle_{\Omega} + \left\langle \omega_2^{k-1}, \nabla \times \omega_1^{k-1} \right\rangle_{\Omega}}{2}.$$

		Discretization		References
00000	00000	0000000	00000000	
Temporal discretization				

Dissipation properties after temporal discretization

Givan a conservative external body force, when $\nu \neq 0$, by repeating a forementioned analysis, one now can find that kinetic energy dissipates at the rate

$$\begin{split} \frac{\mathcal{K}_{1}^{k+\frac{1}{2}} - \mathcal{K}_{1}^{k-\frac{1}{2}}}{\Delta t} &= -\nu \left\langle \frac{\boldsymbol{\omega}_{2}^{k-\frac{1}{2}} + \boldsymbol{\omega}_{2}^{k+\frac{1}{2}}}{2}, \frac{\boldsymbol{\omega}_{2}^{k-\frac{1}{2}} + \boldsymbol{\omega}_{2}^{k+\frac{1}{2}}}{2} \right\rangle_{\Omega} = -2\nu \mathcal{E}_{2}^{k} \leq 0, \\ \frac{\mathcal{K}_{2}^{k} - \mathcal{K}_{2}^{k-1}}{\Delta t} &= -\nu \left\langle \frac{\boldsymbol{\omega}_{1}^{k-1} + \boldsymbol{\omega}_{1}^{k}}{2}, \frac{\boldsymbol{\omega}_{1}^{k-1} + \boldsymbol{\omega}_{1}^{k}}{2} \right\rangle_{\Omega} = -2\nu \mathcal{E}_{1}^{k+\frac{1}{2}} \leq 0. \end{split}$$

And helicity dissipates or generates at the rate :

$$\frac{\mathcal{H}_1^k - \mathcal{H}_1^{k-1}}{\Delta t} = \frac{\mathcal{H}_2^k - \mathcal{H}_2^{k-1}}{\Delta t} = -\nu \left\langle \nabla \times \boldsymbol{\omega}_1^{k-\frac{1}{2}}, \boldsymbol{\omega}_2^{k-\frac{1}{2}} \right\rangle_{\Omega} - \nu \frac{\left\langle \boldsymbol{\omega}_2^k, \nabla \times \boldsymbol{\omega}_1^k \right\rangle_{\Omega} + \left\langle \boldsymbol{\omega}_2^{k-1}, \nabla \times \boldsymbol{\omega}_1^{k-1} \right\rangle_{\Omega}}{2}.$$

17 / 28

Introduction	Conservative weak formulation	Discretization	Tests	References
00000	00000	000000	00000000	
Spatial discretization				

Mimetic spatial discretization

In order to ensure the conservations at the fully discrete level, finite dimensional function spaces employed for the spatial discretization need to form a **discrete de Rham complex**,

$$\mathbb{R} \hookrightarrow H^1(\Omega^h) \xrightarrow{\nabla} H(\operatorname{curl}; \Omega^h) \xrightarrow{\nabla \times} H(\operatorname{div}; \Omega^h) \xrightarrow{\nabla \cdot} L^2(\Omega^h) \to 0,$$

We called these spaces *structure-preserving* or *mimetic* spaces.

 \checkmark Once this is the case, the proofs for the conservation properties and the derivations for kinetic energy dissipation and helicity dissipation (or generation) at the semi-discrete level must hold at the fully discrete level. \Box

We have used the *mimetic polynomial spaces* [1, 2] as our mimetic spaces for the tests.

		Discretization		References
00000	00000	000000	00000000	
Spatial discretization				

Mimetic spatial discretization

In order to ensure the conservations at the fully discrete level, finite dimensional function spaces employed for the spatial discretization need to form a **discrete de Rham complex**,

$$\mathbb{R} \hookrightarrow H^1(\Omega^h) \xrightarrow{\nabla} H(\operatorname{curl}; \Omega^h) \xrightarrow{\nabla \times} H(\operatorname{div}; \Omega^h) \xrightarrow{\nabla \cdot} L^2(\Omega^h) \to 0,$$

We called these spaces *structure-preserving* or *mimetic* spaces.

 \checkmark Once this is the case, the proofs for the conservation properties and the derivations for kinetic energy dissipation and helicity dissipation (or generation) at the semi-discrete level must hold at the fully discrete level. \Box

We have used the *mimetic polynomial spaces* [1, 2] as our mimetic spaces for the tests.

		Discretization		References
00000	00000	000000	00000000	
Spatial discretization				

Mimetic spatial discretization

In order to ensure the conservations at the fully discrete level, finite dimensional function spaces employed for the spatial discretization need to form a **discrete de Rham complex**,

$$\mathbb{R} \hookrightarrow H^1(\Omega^h) \xrightarrow{\nabla} H(\operatorname{curl}; \Omega^h) \xrightarrow{\nabla \times} H(\operatorname{div}; \Omega^h) \xrightarrow{\nabla \cdot} L^2(\Omega^h) \to 0,$$

We called these spaces *structure-preserving* or *mimetic* spaces.

 \checkmark Once this is the case, the proofs for the conservation properties and the derivations for kinetic energy dissipation and helicity dissipation (or generation) at the semi-discrete level must hold at the fully discrete level. \Box

We have used the mimetic polynomial spaces [1, 2] as our mimetic spaces for the tests.

Test 1 : Manufactured conservation test [4]

In periodic unit cube $\Omega := [0, 1]^3$, $\boldsymbol{f} = \boldsymbol{0}, \nu = 0$, we use $\boldsymbol{u}|_{t=0} = \{\cos(2\pi z), \sin(2\pi z), \sin(2\pi z)\}^{\mathsf{T}}$ as the initial condition and let the flow evolve.

Figure – Conservation test MDF-8p2 (proposed Mimetic Dual Field method using 8^3 uniform elements of polynomial degree 2).

Introduction	Conservative weak formulation	Discretization	Tests	References
00000	00000	000000	00000000	

Test 2 : Manufactured convergence test [4]

In periodic unit cube $\Omega := [0, 1]^3$, we use

$$\boldsymbol{u} = \{(2-t)\cos(2\pi z), \ (1+t)\sin(2\pi z), \ (1-t)\sin(2\pi x)\}^{\mathsf{T}}$$

and

$$p = \sin(2\pi(x+y+t))$$

as exact solutions ($\boldsymbol{\omega}$ and \boldsymbol{f} then can be calculated) and compute the flow from t = 0 to t = 2 and measure the error at t = 2.

			Tests	References
00000	00000	000000	0000000	

Test 2 : Manufactured convergence test [4]

			Tests	References
00000	00000	0000000	00000000	

Test 2 : Manufactured convergence test [4]

Introduction	Conservative weak formulation	Discretization	Tests	References
00000	00000	0000000	00000000	

The periodic domain is given as $\Omega := [-\pi L, \pi L]^3$. The body force is set to $\mathbf{f} = \mathbf{0}$ and the initial condition is selected to be

$$\boldsymbol{u}|_{t=0} = \left\{ v_0 \sin(x/L) \cos(y/L) \cos(z/L), -v_0 \cos(x/L) \sin(y/L) \cos(z/L), 0 \right\}^{\mathsf{T}}$$

Such an initial condition has zero initial helicity, $\mathcal{H}|_{t=0} = 0$.

Reynolds number for this test case is defined as

$$Re = \frac{v_0 L}{\nu}$$

			Tests	References
00000	00000	0000000	00000000	

Figure – Iso-surface $\omega_1^x = -3$ of the TGV flow for MDF-24p3 at Re=500.

			Tests	References
00000	00000	000000	000000000	

Figure – Kinetic energy and enstrophy results at Re=500.

			Tests	References
00000	00000	000000	000000000	

Figure – Kinetic energy spectra at t=9.1 for Re=500.

			Tests	References
00000	00000	000000	000000000	

Figure – Kinetic energy and enstrophy results at Re=500.

			Tests	References
00000	00000	0000000	00000000	

Figure – Kinetic energy spectra at t=8.2 for Re=1600.

Introduction	Conservative weak formulation	Discretization	Tests	References
00000	00000	0000000	00000000	•

References

- A. Palha, High order mimetic discretization; development and application to Laplace and advection problems in arbitrary quadrilaterals (2013).
- M. Gerritsma, An introduction to a compatible spectral discretization method, Mechanics of Advanced Materials and Structures 19 (1-3) (2012) 48–67.
- A. Palha, M. Gerritsma, A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier–Stokes equations, Journal of Computational Physics 328 (2017) 200–220.
- L. G. Rebholz, An energy- and helicity-conserving finite element scheme for the Navier–Stokes equations, SIAM Journal on Numerical Analysis 45 (4) (2007) 1622–1638.
- J.-B. Chapelier, M. De La Llave Plata, F. Renac, Inviscid and viscous simulations of the Taylor-Green vortex flow using a modal discontinuous Galerkin approach, in : 42nd AIAA Fluid Dynamics Conference and Exhibit, 2012, p. 3073.