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Motivation

A mass-, kinetic energy- and helicity-conserving high order method is of significant value in the field of CFD,
in particular in the field of turbulence.
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Recap

Rotation form of NSE

The incompressible Navier-Stokes equations (convection form) :

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = f ,(1a)

∇ · u = 0.(1b)

If we use identities
(u · ∇)u = (∇× u)× u+

1

2
∇ (u · u)

and
∆u = ∇ (∇ · u)−∇× (∇× u) = −∇× (∇× u)

and introduce vorticity ω := ∇× u, we can get the rotation form :

∂u

∂t
+ ω × u+ ν∇× ω +∇P = f ,(2a)

ω = ∇× u,(2b)

∇ · u = 0.(2c)
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Recap

Conservation and dissipation

Kinetic energy K, enstrophy E, helicity H :

K =
1

2
〈u,u〉Ω , E =

1

2
〈ω,ω〉Ω , H = 〈u,ω〉Ω .

Mass conservation : ∇ · u = 0

Given a conservative external body force f ,

Kinetic energy conservation and dissipation :

In inviscid case ν = 0,
dK
dt

= 0 ; in viscous case ν 6= 0,
dK
dt

= −2νE.

Helicity conservation and dissipation (or generation) :

In inviscid case ν = 0,
dH
dt

= 0 ; in viscous case ν 6= 0,
dH
dt

= −2ν 〈ω,∇× ω〉Ω.
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Inspirations

Dual field : Hilbert spaces

R �
�

// H1(Ω)
∇ //

OO

?

��

H(curl; Ω)
∇×
//

OO

?

��

H(div; Ω)
∇· //

OO

?

��

L2(Ω) //
OO

?

��

0

0 L2(Ω)oo H(div; Ω)
∇·oo H(curl; Ω)

∇×
oo H1(Ω)

∇oo R? _oo

Figure – A double de Rham complex of Hilbert spaces.
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Inspirations

MEEVC [3]

"A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for
the 2D incompressible Navier-Stokes equations" [3]

A system of two evolution equations are used in MEEVC scheme :

∂u

∂t
+ ω × u+ ν∇× ω +∇P = 0,(3a)

∂ω

∂t
+

1

2
(u · ∇)ω +

1

2
∇ · (uω) = ∆ω,(3b)

∇ · u = 0.(3c)

The two evolution equations are staggered in time such that they can borrow information from each other :
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A mass-, kinetic energy- and helicity-conserving dual-field formulation

Given f ∈
[
L2(Ω)

]3, seek (P0,u1,ω2) ∈ H1(Ω)×H(curl; Ω)×H(div; Ω) and (ω1,u2, P3) ∈ H(curl; Ω)×
H(div; Ω)× L2(Ω) such that

〈
∂u1

∂t
, ε1

〉

Ω

+ 〈ω1 × u1, ε1〉Ω + ν 〈ω2,∇× ε1〉Ω + 〈∇P0, ε1〉Ω = 〈f , ε1〉Ω ∀ε1 ∈ H(curl; Ω),

〈∇ × u1, ε2〉Ω − 〈ω2, ε2〉Ω = 0 ∀ε2 ∈ H(div; Ω),

〈u1,∇ε0〉Ω = 0 ∀ε0 ∈ H1
(Ω),

〈
∂u2

∂t
, ε2

〉

Ω

+ 〈ω2 × u2, ε2〉Ω + ν 〈∇ × ω1, ε2〉Ω − 〈P3,∇ · ε2〉Ω = 〈f , ε2〉Ω ∀ε2 ∈ H(div; Ω),

〈u2,∇× ε1〉Ω − 〈ω1, ε1〉Ω = 0 ∀ε1 ∈ H(curl; Ω),

−〈∇ · u2, ε3〉Ω = 0 ∀ε3 ∈ L2
(Ω).

Variational analysis will reveal that either subset of the solution, (ω1,u2, P3) or (P0,u1,ω2), weakly solves
the rotation form of the Navier-Stokes equations ; it is a dual-field system.

Questions :
© : Is it conservative ?
© : How to reduce the computational cost ? It is a huge non-linear system.
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Conservation and dissipation properties

Mass conservation

We have restricted u2 to space H(Ω; div), the de Rham complex and the constraint

〈∇ · u2, ε3〉Ω = 0, ∀ε3 ∈ L2
(Ω)

ensure that the relation
u2 ∈ H(div; Ω)

∇·−→ 0 ∈ L2
(Ω)

is exact. Therefore, mass conservation is satisfied for velocity u2.

Mass conservation is only weakly satisfied for u1 ∈ H(curl; Ω).
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Conservation and dissipation properties

Kinetic energy conservation

Given a conservative external body force, we set ν = 0. Kinetic energy conservation is equivalent to
dK1

dt
=

〈
∂u1

∂t
,u1

〉

Ω

= 0,
dK2

dt
=

〈
∂u2

∂t
,u2

〉

Ω

= 0.

If we select ε1 to be u1 ∈ H(curl; Ω) in the first evolution equation, we get
〈
∂u1

∂t
,u1

〉

Ω

+
hhhhhhh〈ω1 × u1,u1〉Ω +

hhhhh〈∇P0,u1〉Ω =

〈
∂u1

∂t
,u1

〉

Ω

= 0.

The second term vanishes because of the fact that the cross product of two vectors is perpendicular to both
vectors, i.e.,

(4) 〈a× b,a〉Ω = 〈a× b, b〉Ω ≡ 0.

This relation will be used repeatedly in this work. From relation

〈u1,∇ε0〉Ω = 0, ∀ε0 ∈ H1
(Ω),

It follows that 〈∇P0,u1〉Ω = 0 because P0 ∈ H1(Ω).

Similarly, we can get
〈
∂u2

∂t
,u2

〉

Ω

+
hhhhhhh〈ω2 × u2,u2〉Ω −

hhhhhh〈P3,∇ · u2〉Ω =

〈
∂u2

∂t
,u2

〉

Ω

= 0
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Conservation and dissipation properties

Helicity conservation

Given a conservative external body force, if ν = 0, helcity conservation is equivalent to

dH1

dt
=

d

dt
〈u1,ω1〉Ω =

〈
∂u1

∂t
,ω1

〉

Ω

+

〈
u1,

∂ω1

∂t

〉

Ω

= 0,

dH2

dt
=

d

dt
〈u2,ω2〉Ω =

〈
∂u2

∂t
,ω2

〉

Ω

+

〈
u2,

∂ω2

∂t

〉

Ω

= 0.

From the two evolution equations, one can derive
〈
∂u1

∂t
,ω1

〉

Ω

+
hhhhhhh〈ω1 × u1,ω1〉Ω +

hhhhh〈∇P0,ω1〉Ω =

〈
∂u1

∂t
,ω1

〉

Ω

= 0.

〈
∂ω1

∂t
,u1

〉

Ω

+
hhhhhhhhh
〈ω2 × u2,∇× u1〉Ω −

hhhhhhhh〈P3,∇ · ∇ × u1〉Ω =

〈
∂ω1

∂t
,u1

〉

Ω

= 0.

These two equations conclude the proof for
dH1

dt
= 0. And one can find

H2 = 〈u2,ω2〉Ω = 〈u2,∇× u1〉Ω = 〈ω1,u1〉Ω = H1

for the dual-field system. Thus
dH1

dt
=

dH2

dt
= 0.
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Conservation and dissipation properties

Kinetic energy and helicity dissipation

In viscous case, i.e. ν 6= 0, if we repeat above analysis, the viscous terms remain. We get :

dK1

dt
=

〈
∂u1

∂t
,u1

〉

Ω

= −ν 〈ω2,∇× u1〉Ω = −ν 〈ω2,ω2〉Ω = −2νE2 ≤ 0,

dK2

dt
=

〈
∂u2

∂t
,u2

〉

Ω

= −ν 〈∇ × ω1,u2〉Ω − ν 〈ω1,ω1〉Ω = −2νE1 ≤ 0,

which is in agreement with the dissipation rate for the strong form.

As for helicity, we get
∂H1

∂t
=
∂H2

∂t
= −2ν 〈ω2,∇× ω1〉Ω ,

which is consistent with the relation of the strong formulation,
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Introduction Conservative weak formulation Discretization Tests References

Temporal discretization

Staggered temporal discretization

We use a lowest order Gauss integrator as the time integrator. For example, if we apply the integrator to an
ordinary differential equation of the form

df(t)

dt
= h (f(t), t)

at a time step, for example from time instant tk−1 to time instant tk, we obtain

fk − fk−1

∆t
= h

(
f(t

k−1
+
∆t

2
), t

k−1
+
∆t

2

)
,

where ∆t = tk − tk−1, fk = f(tk).

Additionally, we will use the following approximation, namely midpoint rule

f
k− 1

2 = f(t
k−1

+
∆t

2
) :=

fk−1 + fk

2
,

at the discrete level.
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Temporal discretization

Staggered temporal discretization

Figure – An illustration of the proposed staggered temporal scheme. The iterations proceed in a sequence :
ŝ0 → S1 → Ŝ1 → S2 → Ŝ2 → · · · .
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Temporal discretization

Staggered temporal discretization

At, for example, kth integer time step Sk : Given
(
ωk−1

1 ,uk−1
2 , fk− 1

2 ,ω
k− 1

2
2

)
∈ H(curl; Ω)×H(div; Ω)×

[
L2(Ω)

]3 ×H(div; Ω), find
(
ωk

1 ,u
k
2 , P

k− 1

2
3

)
∈ H(curl; Ω)×H(div; Ω)× L2(Ω) such that





〈
uk

2 − u
k−1
2

∆t
, ε2

〉

Ω

+

〈
ω

k− 1

2
2 ×

uk−1
2 + uk

2

2
, ε2

〉

Ω

+ ν

〈
∇×

ωk−1
1 + ωk

1

2
, ε2

〉

Ω

−
〈
P

k− 1

2
3 ,∇ · ε2

〉

Ω

=
〈
f

k− 1

2 , ε2

〉
Ω
∀ε2 ∈ H(div,Ω),

〈
u

k
2 ,∇× ε1

〉
Ω
−
〈
ω

k
1 , ε1

〉
Ω

= 0 ∀ε1 ∈ H(curl; Ω),

−
〈
∇ · uk

2 , ε3

〉
Ω

= 0 ∀ε3 ∈ L2
(Ω),

where ω
k− 1

2
2 is "borrowed" from the other time step sequence.
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Temporal discretization

Staggered temporal discretization

At, for example, kth half-integer time step Ŝk : Given
(
u

k− 1

2
1 ,ω

k− 1

2
2 , fk,ωk

1

)
∈ H(curl; Ω)×H(div; Ω)×

[
L2(Ω)

]3 ×H(curl; Ω), seek
(
Pk

0 ,u
k+ 1

2
1 ,ω

k+ 1

2
2

)
∈ H1(Ω)×H(curl; Ω)×H(div; Ω) such that





〈
u

k+ 1

2
1 − u

k− 1

2
1

∆t
, ε1

〉

Ω

+

〈
ω

k
1 ×

u
k− 1

2
1 + u

k+ 1

2
1

2
, ε1

〉

Ω

+ ν

〈
ω

k− 1

2
2 + ω

k+ 1

2
2

2
,∇× ε1

〉

Ω

+
〈
∇Pk

0 , ε1

〉
Ω

=
〈
f

k
, ε1

〉
Ω
∀ε1 ∈ H(curl; Ω),

〈
∇× u

k+ 1

2
1 , ε2

〉

Ω

−
〈
ω

k+ 1

2
2 , ε2

〉

Ω

= 0 ∀ε2 ∈ H(div; Ω),

〈
u

k+ 1

2
1 ,∇ε0

〉

Ω

= 0 ∀ε0 ∈ H1
(Ω),

where ωk
1 is "borrowed" from the other time step sequence.
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Temporal discretization

Conservation properties after temporal discretization

Mass conservation is not influenced by the temporal discretization.

Givan a conservative external body force, when ν = 0, one can find kinetic energy conservation is of the
format :

K
k+ 1

2
1 =

1

2

〈
u

k+ 1

2
1 ,u

k+ 1

2
1

〉

Ω

=
1

2

〈
u

k− 1

2
1 ,u

k− 1

2
1

〉

Ω

= K
k− 1

2
1 .

Kk
2 =

1

2

〈
u

k
2 ,u

k
2

〉
Ω

=
1

2

〈
u

k−1
2 ,u

k−1
2

〉
Ω

= Kk−1
2

And helicity conservation becomes

Hk
1 =

〈
u

k− 1

2
1 + u

k− 3

2
1

2
,ω

k−1
1

〉

Ω

=
〈
u

k
1 ,ω

k
1

〉
Ω

=
〈
u

k
2 ,ω

k
2

〉
Ω

=

〈
u

k
2 ,
ω

k− 1

2
2 + ω

k+ 1

2
2

2

〉

Ω

= Hk
2 .
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Temporal discretization

Dissipation properties after temporal discretization

Givan a conservative external body force, when ν 6= 0, by repeating aforementioned analysis, one now can
find that kinetic energy dissipates at the rate

K
k+ 1

2
1 −K

k− 1

2
1

∆t
= −ν

〈
ω

k− 1

2
2 + ω

k+ 1

2
2

2
,
ω

k− 1

2
2 + ω

k+ 1

2
2

2

〉

Ω

= −2νEk2 ≤ 0,

Kk
2 −K

k−1
2

∆t
= −ν

〈
ωk−1

1 + ωk
1

2
,
ωk−1

1 + ωk
1

2

〉

Ω

= −2νE
k+ 1

2
1 ≤ 0.

And helicity dissipates or generates at the rate :

Hk
1 −H

k−1
1

∆t
=
Hk

2 −H
k−1
2

∆t
= −ν

〈
∇× ω

k− 1

2
1 ,ω

k− 1

2
2

〉

Ω

− ν

〈
ωk

2 ,∇× ω
k
1

〉
Ω

+
〈
ωk−1

2 ,∇× ωk−1
1

〉
Ω

2
.
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Spatial discretization

Mimetic spatial discretization

In order to ensure the conservations at the fully discrete level, finite dimensional function spaces employed
for the spatial discretization need to form a discrete de Rham complex,

R ↪→ H
1
(Ω

h
)
∇−→ H(curl; Ω

h
)
∇×−→ H(div; Ω

h
)
∇·−→ L

2
(Ω

h
)→ 0,

We called these spaces structure-preserving or mimetic spaces.

X Once this is the case, the proofs for the conservation properties and the derivations for kinetic energy
dissipation and helicity dissipation (or generation) at the semi-discrete level must hold at the fully discrete
level. �

We have used the mimetic polynomial spaces [1, 2] as our mimetic spaces for the tests.
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Test 1 : Manufactured conservation test [4]
In periodic unit cube Ω := [0, 1]3, f = 0, ν = 0, we use u|t=0 = {cos(2πz), sin(2πz), sin(2πx)}T as the
initial condition and let the flow evolve.
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Figure – Conservation test MDF-8p2 (proposed Mimetic Dual Field method using 83 uniform elements of
polynomial degree 2).
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Test 2 : Manufactured convergence test [4]

In periodic unit cube Ω := [0, 1]3, we use

u = {(2− t) cos(2πz), (1 + t) sin(2πz), (1− t) sin(2πx)}T

and
p = sin(2π(x+ y + t))

as exact solutions (ω and f then can be calculated) and compute the flow from t = 0 to t = 2 and measure
the error at t = 2.
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Test 2 : Manufactured convergence test [4]
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Figure – Manufactured convergence test results 1.
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Test 2 : Manufactured convergence test [4]
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Figure – Manufactured convergence test results 2.
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Test 3 : Taylor-Green vortex flow [5]

The periodic domain is given as Ω := [−πL, πL]3. The body force is set to f = 0 and the initial condition
is selected to be

u|t=0 =
{
v0 sin(x/L) cos(y/L) cos(z/L),−v0 cos(x/L) sin(y/L) cos(z/L), 0

}T
.

Such an initial condition has zero initial helicity, H|t=0 = 0.

Reynolds number for this test case is defined as

Re =
v0L

ν
.
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Test 3 : Taylor-Green vortex flow ; Re=500

(a) t = 0 (b) t = 3 (c) t = 6

(d) t = 9 (e) t = 12 (f) t = 15

Figure – Iso-surface ωx
1 = −3 of the TGV flow for MDF-24p3 at Re=500.
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Test 3 : Taylor-Green vortex flow ; Re=500
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Figure – Kinetic energy and enstrophy results at Re=500.
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Test 3 : Taylor-Green vortex flow ; Re=500

Figure – Kinetic energy spectra at t=9.1 for Re=500.
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Test 3 : Taylor-Green vortex flow ; Re=1600
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Figure – Kinetic energy and enstrophy results at Re=500.
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Test 3 : Taylor-Green vortex flow ; Re=1600
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Figure – Kinetic energy spectra at t=8.2 for Re=1600.
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