

Discrete Geometries of Mathematics and Physics

Mimetic spectral element method¹

Assignment #1

From 1D to higher dimensions

Yi Zhang (张仪)

@: zhangyi_aero@hotmail.com

git: https://github.com/mathischeap

Note that we will restrict ourselves to no more than 2 dimensions in this series of assignments.

1 Function spaces

In \mathbb{R}^2 , consider a bounded domain Ω that is contractible (its topology is same to a point, not to, for example, a doughnut) and has a smooth enough boundary $\partial\Omega$ (means its smoothness is enough to carry on all derivatives in this series of assignments).

The space of square integrable functions in Ω is the Sobolev space $L^2(\Omega)$,

$$L^{2}(\Omega) = \{ \varphi \, | \langle \varphi, \varphi \rangle_{\Omega} < +\infty \} \,.$$

We use $\langle \cdot, \cdot \rangle_{\Omega}$ to denote a inner product. Namely, for any scalars a, b in Ω and any vectors c, d in Ω , we have

$$\langle a,b\rangle_{\Omega}=\int_{\Omega}ab\;\mathrm{d}\Omega,\quad \langle oldsymbol{c},oldsymbol{d}\rangle_{\Omega}=\int_{\Omega}oldsymbol{c}\cdotoldsymbol{d}\;\mathrm{d}\Omega.$$

Some subspaces of $L^2(\Omega)$ are

$$\begin{split} H(\operatorname{curl};\Omega) &:= \left\{ \omega \, \middle| \, \omega \in L^2(\Omega), \nabla \times \omega \in \left[L^2(\Omega) \right]^2 \right\}, \\ \boldsymbol{H}(\operatorname{div};\Omega) &:= \left\{ \boldsymbol{u} \, \middle| \, \boldsymbol{u} \in \left[L^2(\Omega) \right]^2, \nabla \cdot \boldsymbol{u} \in L^2(\Omega) \right\}, \\ H^1(\Omega) &:= \left\{ \phi \, \middle| \, \phi \in L^2(\Omega), \nabla \phi \in \left[L^2(\Omega) \right]^2 \right\}, \\ \boldsymbol{H}(\operatorname{rot};\Omega) &:= \left\{ \boldsymbol{\sigma} \, \middle| \, \boldsymbol{\sigma} \in \left[L^2(\Omega) \right]^2, \nabla \times \boldsymbol{\sigma} \in L^2(\Omega) \right\}. \end{split}$$

 $^{^{1} \}verb|https://mathischeap.com/contents/teaching/advanced_numerical_methods/mimetic_spectral_element_method/main$

They form two exact Hilbert complexes,

$$0 \longrightarrow H(\operatorname{curl};\Omega) \xrightarrow{\nabla \times} \boldsymbol{H}(\operatorname{div};\Omega) \xrightarrow{\nabla \cdot} L^{2}(\Omega) \longrightarrow 0,$$
$$0 \longrightarrow H^{1}(\Omega) \xrightarrow{\nabla} \boldsymbol{H}(\operatorname{rot};\Omega) \xrightarrow{\nabla \times} L^{2}(\Omega) \longrightarrow 0.$$

This means, for example, for any element ω in $H(\operatorname{curl};\Omega)$, $\nabla \times \omega = \left[\frac{\partial \omega}{\partial y} - \frac{\partial \omega}{\partial x}\right]^\mathsf{T}$ must be in $H(\operatorname{div};\Omega)$. Similarly, you can understand other connections in these complexes. Note that at the continuous level, $H(\operatorname{curl};\Omega)$ and $H^1(\Omega)$ are the same space, and the operator $\nabla \times$ on $\omega \in H(\operatorname{curl};\Omega)$ is also called the perpendicular gradient. These spaces are all at the continuous level. Namely, they are infinite-dimensional. This is saying, for anyone of them, we cannot find a set of finite functions that forms a base for it. While the domain Ω is a sub-domain of two-dimensional space \mathbb{R}^2 . You should think carefully about the difference.

Apparently, we cannot solve something of infinite dimensions with our computers. This is why numerical methods need discretization. Different methods have their own ways for discretization. And the mimetic spectral element method decides to approximate these Sobolev spaces with the finite-dimensional (or discrete) mimetic spectral element spaces which are denoted by $C(\Omega)$, $D(\Omega)$, $C(\Omega)$, $C(\Omega)$, $C(\Omega)$, and $C(\Omega)$. They are subspaces of the continuous spaces, i.e.

$$C(\Omega) \subset H(\operatorname{curl};\Omega), \quad \mathbf{D}(\Omega) \subset \mathbf{H}(\operatorname{div};\Omega), \quad G(\Omega) \subset H^1(\Omega), \quad \mathbf{R}(\Omega) \subset \mathbf{H}(\operatorname{rot};\Omega), \quad S(\Omega) \subset L^2(\Omega),$$

and also forms exact Hilbert complexes,

$$(1a) 0 \longrightarrow C(\Omega) \xrightarrow{\nabla \times} \mathbf{D}(\Omega) \xrightarrow{\nabla \cdot} S(\Omega) \longrightarrow 0,$$

(1b)
$$0 \longrightarrow G(\Omega) \xrightarrow{\nabla} \mathbf{R}(\Omega) \xrightarrow{\nabla \times} S(\Omega) \longrightarrow 0.$$

In this assignment, we will try to construct these discrete mimetic spectral element spaces.

2 Mimetic spectral element spaces

As we just introduced, a mimetic spectral element space is a discrete or finite-dimensional space. Recall what we have learned in linear algebra. If we can find a base for a mimetic spectral element space, we can express any element of it using the base and a set of expansion coefficients. Just like the space L or E in Assignment #0. Thus, the key of this assignment is constructing bases for the mimetic spectral element spaces.

In \mathbb{R}^2 , we equip it with an orthogonal coordinate system (ξ, η) and consider a square domain $\Omega_r := [-1, 1]^2$. This domain is called the reference domain (or the reference element). We see that, along each axis, Ω_r ranges from -1 to 1. So, we can apply the partition in Assignment #0 (see (1) there) to both axes,

(2)
$$-1 = \xi_0 < \xi_1 < \xi_2 < \dots < \xi_N = 1,$$

(3)
$$-1 = \eta_0 < \eta_1 < \eta_2 < \dots < \eta_N = 1,$$

where $\xi_i = \eta_i$, $i \in \{0, 1, \dots, N\}$. Note that we do not have to use the same partition along both axes. However, to present the idea, using the same partition is a good choice. And also, it is usually the case in most scenarios.

With partitions (2) and (3), we can construct Lagrange polynomials and edges polynomials along ξ -axis and η -axis,

$$l^{i}(\xi), \quad i \in \{0, 1, \cdots, N\},\$$

$$e^{i}(\xi), i \in \{1, 2, \cdots, N\},\$$

$$l^{j}(\eta), \quad j \in \{0, 1, \cdots, N\},\$$

$$e^{j}(\eta), \quad j \in \{1, 2, \cdots, N\}.$$

These are one-dimensional polynomials. Using them, we construct two-dimensional polynomials as

$$\begin{split} &\mathbf{1}\mathbf{1}^{ij}(\xi,\eta) := l^i(\xi)l^j(\eta), \quad i,j \in \{0,1,\cdots,N\}\,, \\ &\mathbf{1}\mathbf{e}^{ij}(\xi,\eta) := l^i(\xi)e^j(\eta), \quad i \in \{0,1,\cdots,N\}\,, j \in \{1,2,\cdots,N\}\,, \\ &\mathbf{e}\mathbf{1}^{ij}(\xi,\eta) := e^i(\xi)l^j(\eta), \quad i \in \{1,2,\cdots,N\}\,, j \in \{0,1,\cdots,N\}\,, \\ &\mathbf{e}\mathbf{e}^{ij}(\xi,\eta) := e^i(\xi)e^j(\eta), \quad i,j \in \{1,2,\cdots,N\}\,. \end{split}$$

From the one-dimensional Kronecker delta properties in Assignment#0, we can easily derive two-dimensional Kronecker delta properties,

(5a)
$$11^{ij}(\xi_m, \eta_n) = l^i(\xi_m)l^j(\eta_n) = \delta_{m,n}^{i,j}$$

(5b)
$$le^{ij}(\xi_m, \eta_n) = l^i(\xi_m) \int_{\eta_{n-1}}^{\eta_n} e^j(\eta) d\eta = \delta_{m,n}^{i,j},$$

(5c)
$$\mathrm{el}^{ij}(\xi_m,\eta_n) = l^j(\eta_n) \int_{\xi_{m-1}}^{\xi_m} e^i(\xi) \mathrm{d}\xi = \delta_{m,n}^{i,j},$$

(5d)
$$ee^{ij}(\xi_m, \eta_n) = \int_{\xi_{m-1}}^{\xi_m} e^i(\xi) d\xi \int_{\eta_{n-1}}^{\eta_n} e^j(\eta) d\eta = \delta_{m,n}^{i,j},$$

where $\delta_{m,n}^{i,j} = \begin{cases} 1, & \text{if } i=m, j=n \\ 0, & \text{else} \end{cases}$. Then we can use them as basis functions of mimetic spectral element spaces in $\Omega_{\rm r}$. In details, we have

(6a)
$$C(\Omega_{\mathbf{r}}) = G(\Omega_{\mathbf{r}}) := \operatorname{span}\left(\left\{\operatorname{\mathtt{ll}}^{ij}(\xi,\eta)\middle| i,j \in \{0,1,\cdots,N\}\right\}\right),$$

(6b)
$$\mathbf{D}(\Omega_{\mathbf{r}}) := \begin{bmatrix} \operatorname{span}\left(\left\{\operatorname{\mathsf{le}}^{ij}(\xi,\eta)\middle| i, j \in \{0,1,\cdots,N\}, j \in \{1,2,\cdots,N\}\}\right) \\ \operatorname{span}\left(\left\{\operatorname{\mathsf{el}}^{ij}(\xi,\eta)\middle| i \in \{0,1,\cdots,N\}, j \in \{0,1,\cdots,N\}\right\}\right) \end{bmatrix},$$

(6c)
$$\mathbf{R}(\Omega_{\mathbf{r}}) := \begin{bmatrix} \operatorname{span}\left(\left\{\operatorname{el}^{ij}(\xi,\eta)\middle| i \in \{1,2,\cdots,N\}, j \in \{0,1,\cdots,N\}\right\}\right) \\ \operatorname{span}\left(\left\{\operatorname{le}^{ij}(\xi,\eta)\middle| i \in \{0,1,\cdots,N\}, j \in \{1,2,\cdots,N\}\right\}\right) \end{bmatrix},$$

(6d)
$$S(\Omega_{\mathbf{r}}) := \operatorname{span}\left(\left\{\operatorname{ee}^{ij}(\xi, \eta) \middle| i, j \in \{1, 2, \cdots, N\}\right\}\right)$$

Now, elements in these spaces can be expressed as

(7a)
$$\omega_h = \sum_{i=0}^N \sum_{j=0}^N \mathsf{w}_{ij} \mathsf{1} \mathsf{1}^{ij}(\xi, \eta), \qquad \omega_h \in C(\Omega_r) \text{ or } G(\Omega_r),$$

(7b)
$$\boldsymbol{u}_h = \begin{bmatrix} u_h \\ v_h \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^N \sum_{j=1}^N \mathsf{u}_{ij} \mathsf{le}^{ij}(\xi, \eta) \\ \sum_{i=1}^N \sum_{j=0}^N \mathsf{v}_{ij} \mathsf{el}^{ij}(\xi, \eta) \end{bmatrix}, \qquad \boldsymbol{u}_h \in \boldsymbol{D}(\Omega_r),$$

(7c)
$$\boldsymbol{\sigma}_h = \begin{bmatrix} \sigma_h \\ \tau_h \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^N \sum_{j=0}^N \mathsf{s}_{ij} \mathsf{el}^{ij}(\xi, \eta) \\ \sum_{i=0}^N \sum_{j=1}^N \mathsf{t}_{ij} \mathsf{le}^{ij}(\xi, \eta) \end{bmatrix}, \qquad \boldsymbol{\sigma}_h \in \boldsymbol{R}(\Omega_r),$$

(7d)
$$\phi_h = \sum_{i=1}^N \sum_{j=1}^N \mathsf{f}_{ij} \mathsf{ee}^{ij}(\xi, \eta), \qquad \phi_h \in S(\Omega_r).$$

Since the basis functions are two-dimensional polynomials, these elements are also polynomials. And because all basis functions are known, each set of expansion coefficient exclusively refers to one polynomial. For example, a particular set of expansion coefficients $\{u_{ij}\}^2$ one-to-one refers to an polynomial ω_h . A particular set of expansion coefficients $\{u_{ij}\} \cup \{v_{ij}\}$ one-to-one refers to an polynomial u_h . This is why these expansion coefficients are also called degrees of freedom (DoF's).

²A shortcut of $\{w_{ij} | i, j \in \{0, 1, \dots, N\}\}$ to simplify the notation. Same convention is used for other sets.

>----<

In fact, (7) reveals the reconstructions for mimetic spectral element spaces in Ω_r .

The next important question is how to do reductions for these spaces. For $\omega \in H(\text{curl}; \Omega_r)$ or $H^1(\Omega_r)$, to reduce ω to ω_h , we just need to evaluate ω at the partition nodes to compute w_{ij} , i.e.,

(8)
$$\mathbf{w}_{ij} = \omega \left(\xi_i, \eta_j \right).$$

For $\boldsymbol{u} = \begin{bmatrix} u \\ v \end{bmatrix} \in H(\operatorname{div}; \Omega_{r})$, the expansion coefficients of $\boldsymbol{u}_{h} \in \boldsymbol{D}(\Omega_{r})$ are computed through

(9a)
$$\mathsf{u}_{ij} = \int_{\eta_{j-1}}^{\eta_j} u(\xi_i, \eta) \mathrm{d}\eta,$$

(9b)
$$\mathsf{v}_{ij} = \int_{\xi_{i-1}}^{\xi_i} v(\xi, \eta_j) \mathrm{d}\xi.$$

For $\boldsymbol{\sigma} = \begin{bmatrix} \sigma \\ \tau \end{bmatrix} \in H(\mathrm{rot}; \Omega_{\mathrm{r}})$, the expansion coefficients of $\boldsymbol{\sigma}_h \in \boldsymbol{R}(\Omega_{\mathrm{r}})$ are computed through

(10a)
$$\mathsf{s}_{ij} = \int_{\xi_{i-1}}^{\xi_{i}} \sigma(\xi, \eta_{j}) \mathrm{d}\xi,$$

(10b)
$$\mathsf{t}_{ij} = \int_{\eta_{j-1}}^{\eta_j} \tau(\xi_i, \eta) \mathrm{d}\eta.$$

And for $\phi \in S(\Omega_r)$, the expansion coefficients of $\phi_h \in S(\Omega_r)$ are

(11)
$$\mathsf{f}_{ij} = \int_{\xi_{i-1}}^{\xi_i} \int_{\eta_{j-1}}^{\eta_j} \phi(\xi, \eta) \mathrm{d}\eta \mathrm{d}\xi.$$

Clear, the idea of these reductions lies behind the Kronecker delta properties (5).

Assignment 1.1.0: Projection for $\omega \in H(\text{curl}; \Omega_r)$ or $H^1(\Omega_r)$

You need to program two functions, the first one does the reduction and the second

```
one does the reconstruction.
     def CG_space_reduction(nodes, func):
1
2
         """Reduce the function "func" to mimetic spectral element space C or G defined
         over "nodes".
3
4
         Parameters
5
         nodes : np.ndarray
6
            The partition of the interval I. It should be a 1d array of shape (m, ).
7
            For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].
8
9
            The function to be reduced to the space.
10
11
         Returns
12
13
         expansion_coefficients:
             A 2d array of shape (m+1, m+1) that contains the expansion coefficients.
14
15
16
17
     def CG_space_reconstruction(nodes, expansion_coefficients, xi, eta):
18
         """Reconstruct the polynomial in the mimetic spectral element space C or G
19
```



```
over meshgrid of "xi" and "eta".
20
21
         Parameters
22
23
         nodes : np.ndarray
            The partition of the interval I. It should be a 1d array of shape (m, ).
            For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].
         expansion_coefficients : np.ndarray
25
            A 2d array of shape (m+1, m+1) that contains the expansion coefficients.
26
27
         xi : np.ndarray
            The coordinates we evaluate the polynomial along the first axis. It should
28
            be a 1d array of shape (i, ). For example, xi = np.linspace(-1, 1, 100).
            The polynomial will be evaluated on "np.meshgrid(xi, eta, indexing='ij')".
29
         eta : np.ndarray
            The coordinates we evaluate the polynomial along the second axis. It
30
            should be a 1d array of shape (j, ). For example, eta = np.linspace(-1, 1, 1, 1)
            100). The polynomial will be evaluated on "np.meshgrid(xi, eta,
            indexing='ij')".
31
32
         Returns
33
         reconstructed_values : np.ndarray
34
          A 2d array of shape (i, j) that represents the reconstructed values at
35
           "np.meshgrid(xi, eta, indexing='ij')".
36
37
```

Assignment 1.1.1: Projection for $u \in H(div; \Omega_r)$

You need to program two functions, the first one does the reduction and the second one does the reconstruction.

```
1
     def D_space_reduction(nodes, func):
         """Reduce the function "func" to mimetic spectral element space D defined over
2
         "nodes".
3
4
         Parameters
5
6
         nodes : np.ndarray
            The partition of the interval I. It should be a 1d array of shape (m, ).
7
            For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].
         func:
8
            The function to be reduced to the space.
9
10
         Returns
11
12
13
         exp_coef_u:
             A 2d array of shape (m+1, m) that contains the expansion coefficients for
14
             the first component.
15
         exp_coef_v:
             A 2d array of shape (m, m+1) that contains the expansion coefficients for
16
             the second component.
17
         11 11 11
18
19
     def D_space_reconstruction(nodes, exp_coef_u, exp_coef_v, xi, eta):
```



```
"""Reconstruct the polynomial in the mimetic spectral element space C or G
21
         over meshgrid of "xi" and "eta".
22
23
         Parameters
24
25
         nodes : np.ndarray
26
            The partition of the interval I. It should be a 1d array of shape (m, ).
             For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].
27
         exp_coef_u : np.ndarray
             A 2d array of shape (m+1, m) that contains the expansion coefficients of
28
             the first component.
29
         exp_coef_v : np.ndarray
             A 2d array of shape (m, m+1) that contains the expansion coefficients of
30
             the second component.
         xi : np.ndarray
31
32
             The coordinates we evaluate the polynomial along the first axis. It should
             be a 1d array of shape (i, ). For example, xi = np.linspace(-1, 1, 100).
             The polynomial will be evaluated on "np.meshgrid(xi, eta, indexing='ij')".
         eta: np.ndarray
33
             The coordinates we evaluate the polynomial along the second axis. It
34
             should be a 1d array of shape (j, ). For example, eta = np.linspace(-1, 1,
             100). The polynomial will be evaluated on "np.meshgrid(xi, eta,
             indexing='ij')".
35
36
         Returns
37
38
         reconstructed_values_u : np.ndarray
             A 2d array of shape (i, j) that represents the reconstructed values of the
39
             first component at "np.meshgrid(xi, eta, indexing='ij')".
         {\tt reconstructed\_values\_v} \; : \; {\tt np.ndarray}
40
             A 2d array of shape (i, j) that represents the reconstructed values of the
41
             second component at "np.meshgrid(xi, eta, indexing='ij')".
42
         11 11 11
43
```

Assignment 1.1.2: Projection for $\sigma \in H(rot; \Omega_r)$

You need to program two functions, the first one does the reduction and the second one does the reconstruction.

```
def R_space_reduction(nodes, func):
1
         """Reduce the function "func" to mimetic spectral element space R defined over
2
         "nodes".
3
         Parameters
4
5
6
         nodes : np.ndarray
         The partition of the interval I. It should be a 1d array of shape (m, ). For
7
         example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].
8
         func:
9
         The function to be reduced to the space.
10
11
         Returns
12
13
         exp_coef_s:
            A 2d array of shape (m, m+1) that contains the expansion coefficients for
14
```



```
the first component.
15
         exp_coef_t:
16
            A 2d array of shape (m+1, m) that contains the expansion coefficients for
            the second component.
17
18
19
20
     def R_space_reconstruction(nodes, exp_coef_s, exp_coef_t, xi, eta):
         """Reconstruct the polynomial in the mimetic spectral element space {\tt C} or {\tt G}
21
         over meshgrid of "xi" and "eta".
22
23
         Parameters
24
25
         nodes : np.ndarray
            The partition of the interval I. It should be a 1d array of shape (m, ).
26
            For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].
         exp_coef_s : np.ndarray
27
            A 2d array of shape (m, m+1) that contains the expansion coefficients of
28
            the first component.
29
         exp_coef_t : np.ndarray
             A 2d array of shape (m+1, m) that contains the expansion coefficients of
30
             the second component.
31
         xi : np.ndarray
32
            The coordinates we evaluate the polynomial along the first axis. It should
             be a 1d array of shape (i, ). For example, xi = np.linspace(-1, 1, 100).
            The polynomial will be evaluated on "np.meshgrid(xi, eta, indexing='ij')".
33
         eta : np.ndarray
            The coordinates we evaluate the polynomial along the second axis. It
34
             should be a 1d array of shape (j, ). For example, eta = np.linspace(-1, 1,
             100). The polynomial will be evaluated on "np.meshgrid(xi, eta,
             indexing='ij')".
35
36
         Returns
37
         reconstructed_values_s : np.ndarray
38
            A 2d array of shape (i, j) that represents the reconstructed values of the
39
            first component at "np.meshgrid(xi, eta, indexing='ij')".
         reconstructed_values_t : np.ndarray
40
            A 2d array of shape (i, j) that represents the reconstructed values of the
41
            second component at "np.meshgrid(xi, eta, indexing='ij')".
42
         11.11.11
43
```

Assignment 1.1.3: Projection for $\phi \in S(\Omega_r)$

You need to program two functions, the first one does the reduction and the second one does the reconstruction.

```
def S_space_reduction(nodes, func):
    """Reduce the function "func" to mimetic spectral element space S defined over
    "nodes".

Parameters
    ------
nodes : np.ndarray
The partition of the interval I. It should be a 1d array of shape (m, ).
```

```
\triangleright——\triangleleft
```

```
For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].
8
         func:
9
            The function to be reduced to the space.
10
         Returns
11
12
13
         expansion_coefficients:
14
            A 2d array of shape (m, m) that contains the expansion coefficients.
15
16
17
18
     def S_space_reconstruction(nodes, expansion_coefficients, xi, eta):
         """Reconstruct the polynomial in the mimetic spectral element space C or G
19
         over meshgrid of "xi" and "eta".
20
21
         Parameters
22
23
         nodes : np.ndarray
            The partition of the interval I. It should be a 1d array of shape (m, ).
             For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].
         expansion_coefficients : np.ndarray
25
             A 2d array of shape (m, m) that contains the expansion coefficients.
26
27
         xi : np.ndarray
28
            The coordinates we evaluate the polynomial along the first axis. It should
            be a 1d array of shape (i, ). For example, xi = np.linspace(-1, 1, 100).
            The polynomial will be evaluated on "np.meshgrid(xi, eta, indexing='ij')".
29
         eta : np.ndarray
            The coordinates we evaluate the polynomial along the second axis. It
30
             should be a 1d array of shape (j, ). For example, eta = np.linspace(-1, 1,
             100). The polynomial will be evaluated on "np.meshgrid(xi, eta,
             indexing='ij')".
31
32
         Returns
33
         reconstructed_values : np.ndarray
34
            A 2d array of shape (i, j) that represents the reconstructed values at
35
             "np.meshgrid(xi, eta, indexing='ij')".
36
37
```

3 Incidence matrices

So far, we have constructed mimetic spectral element spaces $C(\Omega)$, $G(\Omega)$, $D(\Omega)$, $R(\Omega)$, and $S(\Omega)$, and know how to project functions into them. However, the key structure between them, i.e. the Hilbert complexes

$$\begin{split} 0 &\longrightarrow C(\Omega) \stackrel{\nabla \times}{\longrightarrow} \boldsymbol{D}(\Omega) \stackrel{\nabla \cdot}{\longrightarrow} S(\Omega) \longrightarrow 0, \\ 0 &\longrightarrow G(\Omega) \stackrel{\nabla}{\longrightarrow} \boldsymbol{R}(\Omega) \stackrel{\nabla \times}{\longrightarrow} S(\Omega) \longrightarrow 0. \end{split}$$

is not addressed yet. Recall that, in Assignment #0, the connection between the Lagrange space and the edge space can be interpolated as the incidence matrix. Naturally, we look forward to a similar sturcture in two-dimensions.

We repeat that polynomials in the mimetic spectral element spaces have general formats as

$$\begin{aligned} &\omega_h = \sum_{i=0}^N \sum_{j=0}^N \mathsf{w}_{ij} \mathbf{1} \mathbf{1}^{ij}(\xi, \eta), & \omega_h \in C(\Omega_{\mathrm{r}}) \text{ or } G(\Omega_{\mathrm{r}}), \\ &\mathbf{u}_h = \begin{bmatrix} u_h \\ v_h \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^N \sum_{j=1}^N \mathsf{u}_{ij} \mathbf{1} \mathbf{e}^{ij}(\xi, \eta) \\ \sum_{i=1}^N \sum_{j=0}^N \mathsf{v}_{ij} \mathbf{e} \mathbf{1}^{ij}(\xi, \eta) \end{bmatrix}, & \mathbf{u}_h \in \mathbf{D}(\Omega_{\mathrm{r}}), \\ &\mathbf{\sigma}_h = \begin{bmatrix} \sigma_h \\ \tau_h \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^N \sum_{j=0}^N \mathsf{s}_{ij} \mathbf{e} \mathbf{1}^{ij}(\xi, \eta) \\ \sum_{i=0}^N \sum_{j=1}^N \mathsf{t}_{ij} \mathbf{1} \mathbf{e}^{ij}(\xi, \eta) \end{bmatrix}, & \mathbf{\sigma}_h \in \mathbf{R}(\Omega_{\mathrm{r}}), \\ &\phi_h = \sum_{i=1}^N \sum_{j=1}^N \mathsf{f}_{ij} \mathbf{e} \mathbf{e}^{ij}(\xi, \eta), & \phi_h \in S(\Omega_{\mathrm{r}}). \end{aligned}$$

In a geometric angle of view, the expansion coefficients represent degrees of freedom defined on points, edges, and faces, see Fig. 1.

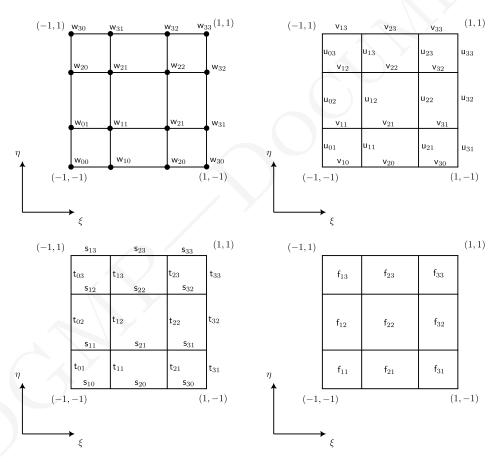


Fig. 1: Distributions of degrees of freedom in a geometric anlge of view.

Assume that these polynomials are projections of ω , u, σ , and ϕ in corresponding spaces,

$$\omega_h = \pi(\omega), \quad \boldsymbol{u}_h = \pi(\boldsymbol{u}), \quad \boldsymbol{\sigma}_h = \pi(\boldsymbol{\sigma}), \quad \phi_h = \pi(\phi).$$

From the properties of Lagrange polynomials and edge polynomials, we can easily get the colusions in following subsections.

3.1 Incidence matrix \mathbb{E}_C

If $\boldsymbol{u} = \nabla \times \omega$, we must have $\boldsymbol{u}_h = \nabla \times \omega_h$ and

$$\vec{\boldsymbol{u}} = \mathbb{E}_C \vec{\omega}.$$

The vectors are

$$ec{\omega} = egin{bmatrix} \mathsf{w}_1 \ \mathsf{w}_2 \ dots \ \mathsf{w}_{(N+1)^2} \end{bmatrix}$$

where $w_{j\times(N+1)+i+1} = w_{ij}, i, j \in \{0, 1, \dots, N\}$, and

$$ec{m{u}} = egin{bmatrix} m{u}_1 \ m{u}_2 \ dots \ m{u}_{(N+1) imes N} \ m{v}_1 \ m{v}_2 \ dots \ m{v}_{N imes (N+1)} \end{bmatrix}$$

where $\mathsf{u}_{(j-1)\times(N+1)+i+1} = \mathsf{u}_{ij}, i \in \{0,1,\cdots,N\}, j \in \{1,2,\cdots,N\} \text{ and } \mathsf{v}_{j\times N+i} = \mathsf{v}_{ij}, i \in \{1,2,\cdots,N\}, j \in \{0,1,\cdots,N\}.$ And the matrix \mathbb{E}_C is the incidence matrix who has $2N\times(N+1)$ rows and $(N+1)^2$ columns. It is a sparse matrix and the non-zero entries of it are

$$\begin{split} & \mathbb{E}_{C}|_{(j-1)\times(N+1)+i+1,(j-1)\times(N+1)+i+1} = -1, \quad i \in \{0,1,\cdots,N\}\,, j \in \{1,2,\cdots,N\}\,, \\ & \mathbb{E}_{C}|_{(j-1)\times(N+1)+i+1,j\times(N+1)+i+1} = 1, \quad i \in \{0,1,\cdots,N\}\,, j \in \{1,2,\cdots,N\}\,, \\ & \mathbb{E}_{C}|_{N\times(N+1)+j\times N+i,j\times(N+1)+i} = 1, \quad i \in \{1,2,\cdots,N\}\,, j \in \{0,1,\cdots,N\}\,, \\ & \mathbb{E}_{C}|_{N\times(N+1)+j\times N+i,j\times(N+1)+i+1} = -1, \quad i \in \{1,2,\cdots,N\}\,, j \in \{0,1,\cdots,N\}\,. \end{split}$$

See Fig. 2 for an illustration of the geometric representation for the incidence matrix \mathbb{E}_C .

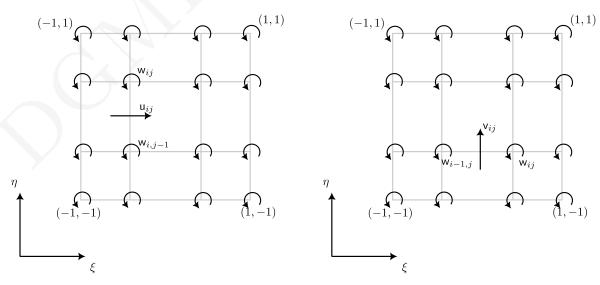


Fig. 2: An illustration of the geometric representation for the incidence matrix \mathbb{E}_C .

3.2 Incidence matrix \mathbb{E}_G

If $\sigma = \nabla \omega$, we must have $\sigma_h = \nabla \omega_h$ and

(15)
$$\vec{\sigma} = \mathbb{E}_G \vec{\omega}.$$

The vector $\vec{\sigma}$ is

$$ec{\sigma} = egin{bmatrix} \mathsf{s}_1 \ \mathsf{s}_2 \ dots \ \mathsf{s}_{(N+1) imes N} \ \mathsf{t}_1 \ \mathsf{t}_2 \ dots \ \mathsf{t}_{N imes (N+1)} \end{bmatrix}$$

where $s_{j\times N+i}=s_{ij}, i\in\{1,2,\cdots,N\}$, $j\in\{0,1,\cdots,N\}$ and $t_{(j-1)\times(N+1)+i+1}=t_{ij}, i\in\{0,1,\cdots,N\}$, $j\in\{1,2,\cdots,N\}$. And the matrix \mathbb{E}_G is the incidence matrix who has $2N\times(N+1)$ rows and $(N+1)^2$ columns. It is a sparse matrix and the non-zero entries of it are

$$\begin{split} &\mathbb{E}_{G}|_{j\times N+i, j\times (N+1)+i} = -1, \quad i \in \{1, 2, \cdots, N\} \,, j \in \{0, 1, \cdots, N\} \,, \\ &\mathbb{E}_{G}|_{j\times N+i, j\times (N+1)+i+1} = 1, \quad i \in \{1, 2, \cdots, N\} \,, j \in \{0, 1, \cdots, N\} \,, \\ &\mathbb{E}_{G}|_{N\times (N+1)+(j-1)\times (N+1)+i+1, (j-1)\times (N+1)+i+1} = -1, \quad i \in \{0, 1, \cdots, N\} \,, j \in \{1, 2, \cdots, N\} \,, \\ &\mathbb{E}_{G}|_{N\times (N+1)+(j-1)\times (N+1)+i+1, j\times (N+1)+i+1} = 1, \quad i \in \{0, 1, \cdots, N\} \,, j \in \{1, 2, \cdots, N\} \,. \end{split}$$

See Fig. 3 for an illustration of the geometric representation for the incidence matrix \mathbb{E}_G .

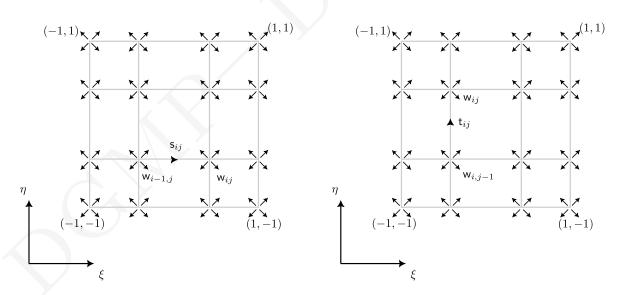


Fig. 3: An illustration of the geometric representation for the incidence matrix \mathbb{E}_G .

3.3 Incidence matrix \mathbb{E}_D

If $\phi = \nabla \cdot \boldsymbol{u}$, we must have $\phi_h = \nabla \cdot \boldsymbol{u}_h$ and

$$\vec{\phi} = \mathbb{E}_D \vec{\boldsymbol{u}}.$$

The vector $\vec{\phi}$ is

$$ec{\phi} = egin{bmatrix} \mathsf{f}_1 \ \mathsf{f}_2 \ dots \ \mathsf{f}_{N^2} \end{bmatrix}$$

where $f_{(j-1)\times N+i} = w_{ij}, i, j \in \{1, 2, \dots, N\}$. The matrix \mathbb{E}_D is the incidence matrix who has N^2 rows and $2N \times (N+1)$ columns. It is a sparse matrix and the non-zero entries of it are

$$\begin{split} & \mathbb{E}_{D}|_{(j-1)\times N+i,(j-1)\times (N+1)+i} = -1, \quad i,j \in \{1,2,\cdots,N\} \,, \\ & \mathbb{E}_{D}|_{(j-1)\times N+i,(j-1)\times (N+1)+i+1} = 1, \quad i,j \in \{1,2,\cdots,N\} \,, \\ & \mathbb{E}_{D}|_{(j-1)\times N+i,N\times (N+1)+(j-1)\times N+i} = -1, \quad i,j \in \{1,2,\cdots,N\} \,, \\ & \mathbb{E}_{D}|_{(j-1)\times N+i,N\times (N+1)+j\times N+i} = 1, \quad i,j \in \{1,2,\cdots,N\} \,. \end{split}$$

See Fig. 4 for an illustration of the geometric representation for the incidence matrix \mathbb{E}_D .

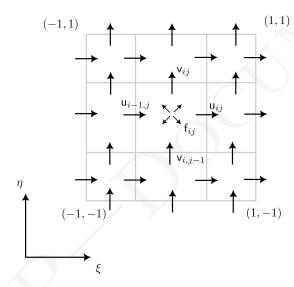


Fig. 4: An illustration of the geometric representation for the incidence matrix \mathbb{E}_D .

3.4 Incidence matrix \mathbb{E}_R

If $\phi = \nabla \times \boldsymbol{\sigma}$, we must have $\phi_h = \nabla \times \boldsymbol{\sigma}_h$ and

(17)
$$\vec{\phi} = \mathbb{E}_R \vec{\sigma}.$$

The matrix \mathbb{E}_R is the incidence matrix who has N^2 rows and $2N \times (N+1)$ columns. It is a sparse matrix and the non-zero entries of it are

$$\mathbb{E}_{R}|_{(j-1)\times N+i,N\times(N+1)+(j-1)\times(N+1)+i} = -1, \quad i,j \in \{1,2,\cdots,N\},$$

$$\mathbb{E}_{R}|_{(j-1)\times N+i,N\times(N+1)+(j-1)\times(N+1)+i+1} = 1, \quad i,j \in \{1,2,\cdots,N\}.$$

$$\mathbb{E}_{R}|_{(j-1)\times N+i,(j-1)\times N+i} = 1, \quad i,j \in \{1,2,\cdots,N\},$$

$$\mathbb{E}_{R}|_{(j-1)\times N+i,j\times N+i} = -1, \quad i,j \in \{1,2,\cdots,N\}.$$

See Fig. 5 for an illustration of the geometric representation for the incidence matrix \mathbb{E}_R .

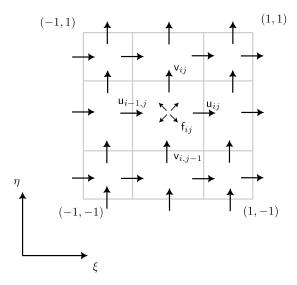


Fig. 5: An illustration of the geometric representation for the incidence matrix \mathbb{E}_R .

Assignment 1.2.0: Incidence matrix \mathbb{E}_C

You need to program a function to compute the incidence matrix \mathbb{E}_C . Then you can play with the incidence matrix to verify (14).

Assignment 1.2.1: Incidence matrix \mathbb{E}_G

You need to program a function to compute the incidence matrix \mathbb{E}_G . Then you can play with the incidence matrix to verify (15).

Assignment 1.2.2: Incidence matrix \mathbb{E}_D

You need to program a function to compute the incidence matrix \mathbb{E}_D . Then you can play with the incidence matrix to verify (16).

Assignment 1.2.3: Incidence matrix \mathbb{E}_R

You need to program a function to compute the incidence matrix \mathbb{E}_R . Then you can play with the incidence matrix to verify (17).

4 Three dimensions

In this series of assignments, we will not go to three dimensions. But the approach is similar. Read [1, Chapter 2] for the details.

References

[1] Y. Zhang, Mimetic Spectral Element Method and Extensions toward Higher Computational Efficiency (2022).