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Note that we will restrict ourselves to no more than 2 dimensions in this series of assignments.

1 Function spaces

In R2, consider a bounded domain Ω that is contractible (its topology is same to a point, not to,
for example, a doughnut) and has a smooth enough boundary ∂Ω (means its smoothness is enough
to carry on all derivatives in this series of assignments).

The space of square integrable functions in Ω is the Sobolev space L2(Ω),

L2(Ω) = {φ |⟨φ,φ⟩Ω < +∞} .

We use ⟨·, ·⟩Ω to denote a inner product. Namely, for any scalars a, b in Ω and any vectors c,d in
Ω, we have

⟨a, b⟩Ω =

∫
Ω

ab dΩ, ⟨c,d⟩Ω =

∫
Ω

c · d dΩ.

Some subspaces of L2(Ω) are

H(curl; Ω) :=
{
ω
∣∣∣ω ∈ L2(Ω),∇× ω ∈

[
L2(Ω)

]2}
,

H(div; Ω) :=
{
u
∣∣∣u ∈

[
L2(Ω)

]2
,∇ · u ∈ L2(Ω)

}
,

H1(Ω) :=
{
ϕ
∣∣∣ϕ ∈ L2(Ω),∇ϕ ∈

[
L2(Ω)

]2}
,

H(rot; Ω) :=
{
σ
∣∣∣σ ∈

[
L2(Ω)

]2
,∇× σ ∈ L2(Ω)

}
.

1https://mathischeap.com/contents/teaching/advanced_numerical_methods/mimetic_spectral_element_method/main
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They form two exact Hilbert complexes,

0 −→ H(curl; Ω)
∇×−→ H(div; Ω)

∇·−→ L2(Ω) −→ 0,

0 −→ H1(Ω)
∇−→ H(rot; Ω)

∇×−→ L2(Ω) −→ 0.

This means, for example, for any element ω in H(curl; Ω), ∇ × ω =

[
∂ω

∂y
−∂ω

∂x

]T
must be in

H(div; Ω). Similarly, you can understand other connections in these complexes. Note that at the
continuous level, H(curl; Ω) and H1(Ω) are the same space, and the operator ∇× on ω ∈ H(curl; Ω)
is also called the perpendicular gradient. These spaces are all at the continuous level. Namely, they
are infinite-dimensional. This is saying, for anyone of them, we cannot find a set of finite functions
that forms a base for it. While the domain Ω is a sub-domain of two-dimensional space R2. You
should think carefully about the difference.

Apparently, we cannot solve something of infinite dimensions with our computers. This is why
numerical methods need discretization. Different methods have their own ways for discretization.
And the mimetic spectral element method decides to approximate these Sobolev spaces with the
finite-dimensional (or discrete) mimetic spectral element spaces which are denoted by C(Ω), D(Ω),
G(Ω), R(Ω), and S(Ω). They are subspaces of the continuous spaces, i.e.

C(Ω) ⊂ H(curl; Ω), D(Ω) ⊂ H(div; Ω), G(Ω) ⊂ H1(Ω), R(Ω) ⊂ H(rot; Ω), S(Ω) ⊂ L2(Ω),

and also forms exact Hilbert complexes,

0 −→ C(Ω)
∇×−→ D(Ω)

∇·−→ S(Ω) −→ 0,(1a)

0 −→ G(Ω)
∇−→ R(Ω)

∇×−→ S(Ω) −→ 0.(1b)

In this assignment, we will try to construct these discrete mimetic spectral element spaces.

2 Mimetic spectral element spaces

As we just introduced, a mimetic spectral element space is a discrete or finite-dimensional
space. Recall what we have learned in linear algebra. If we can find a base for a mimetic spectral
element space, we can express any element of it using the base and a set of expansion coefficients.
Just like the space L or E in Assignment #0. Thus, the key of this assignment is constructing bases
for the mimetic spectral element spaces.

In R2, we equip it with an orthogonal coordinate system (ξ, η) and consider a square domain
Ωr := [−1, 1]2. This domain is called the reference domain (or the reference element). We see that,
along each axis, Ωr ranges from −1 to 1. So, we can apply the partition in Assignment #0 (see (1)
there) to both axes,

(2) −1 = ξ0 < ξ1 < ξ2 < · · · < ξN = 1,

(3) −1 = η0 < η1 < η2 < · · · < ηN = 1,

where ξi = ηi, i ∈ {0, 1, · · · , N}. Note that we do not have to use the same partition along both
axes. However, to present the idea, using the same partition is a good choice. And also, it is usually
the case in most scenarios.

With partitions (2) and (3), we can construct Lagrange polynomials and edges polynomials
along ξ-axis and η-axis,

li(ξ), i ∈ {0, 1, · · · , N} ,

ei(ξ), i ∈ {1, 2, · · · , N} ,

lj(η), j ∈ {0, 1, · · · , N} ,
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ej(η), j ∈ {1, 2, · · · , N} .

These are one-dimensional polynomials. Using them, we construct two-dimensional polynomials as

llij(ξ, η) := li(ξ)lj(η), i, j ∈ {0, 1, · · · , N} ,
leij(ξ, η) := li(ξ)ej(η), i ∈ {0, 1, · · · , N} , j ∈ {1, 2, · · · , N} ,
elij(ξ, η) := ei(ξ)lj(η), i ∈ {1, 2, · · · , N} , j ∈ {0, 1, · · · , N} ,
eeij(ξ, η) := ei(ξ)ej(η), i, j ∈ {1, 2, · · · , N} .

From the one-dimensional Kronecker delta properties in Assignment#0, we can easily derive two-
dimensional Kronecker delta properties,

llij(ξm, ηn) = li(ξm)lj(ηn) = δi,jm,n(5a)

leij(ξm, ηn) = li(ξm)

∫ ηn

ηn−1

ej(η)dη = δi,jm,n,(5b)

elij(ξm, ηn) = lj(ηn)

∫ ξm

ξm−1

ei(ξ)dξ = δi,jm,n,(5c)

eeij(ξm, ηn) =

∫ ξm

ξm−1

ei(ξ)dξ

∫ ηn

ηn−1

ej(η)dη = δi,jm,n,(5d)

where δi,jm,n =

{
1, if i = m, j = n

0, else
. Then we can use them as basis functions of mimetic spectral

element spaces in Ωr. In details, we have

C(Ωr) = G(Ωr) := span
({

llij(ξ, η)
∣∣ i, j ∈ {0, 1, · · · , N}

})
,(6a)

D(Ωr) :=

[
span

({
leij(ξ, η)

∣∣ i ∈ {0, 1, · · · , N} , j ∈ {1, 2, · · · , N}
})

span
({

elij(ξ, η)
∣∣ i ∈ {1, 2, · · · , N} , j ∈ {0, 1, · · · , N}

})] ,(6b)

R(Ωr) :=

[
span

({
elij(ξ, η)

∣∣ i ∈ {1, 2, · · · , N} , j ∈ {0, 1, · · · , N}
})

span
({

leij(ξ, η)
∣∣ i ∈ {0, 1, · · · , N} , j ∈ {1, 2, · · · , N}

})] ,(6c)

S(Ωr) := span
({

eeij(ξ, η)
∣∣ i, j ∈ {1, 2, · · · , N}

})
.(6d)

Now, elements in these spaces can be expressed as

ωh =
N∑
i=0

N∑
j=0

wijll
ij(ξ, η), ωh ∈ C(Ωr) or G(Ωr),(7a)

uh =

[
uh

vh

]
=

[∑N
i=0

∑N
j=1 uijle

ij(ξ, η)∑N
i=1

∑N
j=0 vijel

ij(ξ, η)

]
, uh ∈ D(Ωr),(7b)

σh =

[
σh

τh

]
=

[∑N
i=1

∑N
j=0 sijel

ij(ξ, η)∑N
i=0

∑N
j=1 tijle

ij(ξ, η)

]
, σh ∈ R(Ωr),(7c)

ϕh =
N∑
i=1

N∑
j=1

fijee
ij(ξ, η), ϕh ∈ S(Ωr).(7d)

Since the basis functions are two-dimensional polynomials, these elements are also polynomials.
And because all basis functions are known, each set of expansion coefficient exclusively refers to
one polynomial. For example, a particular set of expansion coefficients {wij}2 one-to-one refers to
an polynomial ωh. A particular set of expansion coefficients {uij} ∪ {vij} one-to-one refers to an
polynomial uh. This is why these expansion coefficients are also called degrees of freedom (DoF’s).

2A shortcut of {wij | i, j ∈ {0, 1, · · · , N}} to simplify the notation. Same convention is used for other sets.
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In fact, (7) reveals the reconstructions for mimetic spectral element spaces in Ωr.
The next important question is how to do reductions for these spaces. For ω ∈ H(curl; Ωr) or

H1(Ωr), to reduce ω to ωh, we just need to evaluate ω at the partition nodes to compute wij , i.e.,

(8) wij = ω (ξi, ηj) .

For u =

[
u
v

]
∈ H(div; Ωr), the expansion coefficients of uh ∈ D(Ωr) are computed through

uij =

∫ ηj

ηj−1

u(ξi, η)dη,(9a)

vij =

∫ ξi

ξi−1

v(ξ, ηj)dξ.(9b)

For σ =

[
σ
τ

]
∈ H(rot; Ωr), the expansion coefficients of σh ∈ R(Ωr) are computed through

sij =

∫ ξi

ξi−1

σ(ξ, ηj)dξ,(10a)

tij =

∫ ηj

ηj−1

τ(ξi, η)dη.(10b)

And for ϕ ∈ S(Ωr), the expansion coefficients of ϕh ∈ S(Ωr) are

(11) fij =

∫ ξi

ξi−1

∫ ηj

ηj−1

ϕ(ξ, η)dηdξ.

Clear, the idea of these reductions lies behind the Kronecker delta properties (5).

Assignment 1.1.0: Projection for ω ∈ H(curl; Ωr) or H1(Ωr)

You need to program two functions, the first one does the reduction and the second
one does the reconstruction.

1 def CG_space_reduction(nodes, func):

2 """Reduce the function "func" to mimetic spectral element space C or G defined

over "nodes".

3

4 Parameters

5 ----------

6 nodes : np.ndarray

7 The partition of the interval I. It should be a 1d array of shape (m, ).

For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].

8 func :

9 The function to be reduced to the space.

10

11 Returns

12 -------

13 expansion_coefficients:

14 A 2d array of shape (m+1, m+1) that contains the expansion coefficients.

15

16 """

17

18 def CG_space_reconstruction(nodes, expansion_coefficients, xi, eta):

19 """Reconstruct the polynomial in the mimetic spectral element space C or G

4



D
G
M
P
—
D
oc
um
en
t

MSEM-A1-Higher-dimensions Version 2025/08/15.00:35 ▷——◁

over meshgrid of "xi" and "eta".

20

21 Parameters

22 ----------

23 nodes : np.ndarray

24 The partition of the interval I. It should be a 1d array of shape (m, ).

For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].

25 expansion_coefficients : np.ndarray

26 A 2d array of shape (m+1, m+1) that contains the expansion coefficients.

27 xi : np.ndarray

28 The coordinates we evaluate the polynomial along the first axis. It should

be a 1d array of shape (i, ). For example, xi = np.linspace(-1, 1, 100).

The polynomial will be evaluated on "np.meshgrid(xi, eta, indexing=’ij’)".

29 eta : np.ndarray

30 The coordinates we evaluate the polynomial along the second axis. It

should be a 1d array of shape (j, ). For example, eta = np.linspace(-1, 1,

100). The polynomial will be evaluated on "np.meshgrid(xi, eta,

indexing=’ij’)".

31

32 Returns

33 -------

34 reconstructed_values : np.ndarray

35 A 2d array of shape (i, j) that represents the reconstructed values at

"np.meshgrid(xi, eta, indexing=’ij’)".

36

37 """

Assignment 1.1.1: Projection for u ∈ H(div; Ωr)

You need to program two functions, the first one does the reduction and the second
one does the reconstruction.

1 def D_space_reduction(nodes, func):

2 """Reduce the function "func" to mimetic spectral element space D defined over

"nodes".

3

4 Parameters

5 ----------

6 nodes : np.ndarray

7 The partition of the interval I. It should be a 1d array of shape (m, ).

For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].

8 func :

9 The function to be reduced to the space.

10

11 Returns

12 -------

13 exp_coef_u:

14 A 2d array of shape (m+1, m) that contains the expansion coefficients for

the first component.

15 exp_coef_v:

16 A 2d array of shape (m, m+1) that contains the expansion coefficients for

the second component.

17

18 """

19

20 def D_space_reconstruction(nodes, exp_coef_u, exp_coef_v, xi, eta):

5
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21 """Reconstruct the polynomial in the mimetic spectral element space C or G

over meshgrid of "xi" and "eta".

22

23 Parameters

24 ----------

25 nodes : np.ndarray

26 The partition of the interval I. It should be a 1d array of shape (m, ).

For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].

27 exp_coef_u : np.ndarray

28 A 2d array of shape (m+1, m) that contains the expansion coefficients of

the first component.

29 exp_coef_v : np.ndarray

30 A 2d array of shape (m, m+1) that contains the expansion coefficients of

the second component.

31 xi : np.ndarray

32 The coordinates we evaluate the polynomial along the first axis. It should

be a 1d array of shape (i, ). For example, xi = np.linspace(-1, 1, 100).

The polynomial will be evaluated on "np.meshgrid(xi, eta, indexing=’ij’)".

33 eta : np.ndarray

34 The coordinates we evaluate the polynomial along the second axis. It

should be a 1d array of shape (j, ). For example, eta = np.linspace(-1, 1,

100). The polynomial will be evaluated on "np.meshgrid(xi, eta,

indexing=’ij’)".

35

36 Returns

37 -------

38 reconstructed_values_u : np.ndarray

39 A 2d array of shape (i, j) that represents the reconstructed values of the

first component at "np.meshgrid(xi, eta, indexing=’ij’)".

40 reconstructed_values_v : np.ndarray

41 A 2d array of shape (i, j) that represents the reconstructed values of the

second component at "np.meshgrid(xi, eta, indexing=’ij’)".

42

43 """

Assignment 1.1.2: Projection for σ ∈ H(rot; Ωr)

You need to program two functions, the first one does the reduction and the second
one does the reconstruction.

1 def R_space_reduction(nodes, func):

2 """Reduce the function "func" to mimetic spectral element space R defined over

"nodes".

3

4 Parameters

5 ----------

6 nodes : np.ndarray

7 The partition of the interval I. It should be a 1d array of shape (m, ). For

example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].

8 func :

9 The function to be reduced to the space.

10

11 Returns

12 -------

13 exp_coef_s:

14 A 2d array of shape (m, m+1) that contains the expansion coefficients for

6
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the first component.

15 exp_coef_t:

16 A 2d array of shape (m+1, m) that contains the expansion coefficients for

the second component.

17

18 """

19

20 def R_space_reconstruction(nodes, exp_coef_s, exp_coef_t, xi, eta):

21 """Reconstruct the polynomial in the mimetic spectral element space C or G

over meshgrid of "xi" and "eta".

22

23 Parameters

24 ----------

25 nodes : np.ndarray

26 The partition of the interval I. It should be a 1d array of shape (m, ).

For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].

27 exp_coef_s : np.ndarray

28 A 2d array of shape (m, m+1) that contains the expansion coefficients of

the first component.

29 exp_coef_t : np.ndarray

30 A 2d array of shape (m+1, m) that contains the expansion coefficients of

the second component.

31 xi : np.ndarray

32 The coordinates we evaluate the polynomial along the first axis. It should

be a 1d array of shape (i, ). For example, xi = np.linspace(-1, 1, 100).

The polynomial will be evaluated on "np.meshgrid(xi, eta, indexing=’ij’)".

33 eta : np.ndarray

34 The coordinates we evaluate the polynomial along the second axis. It

should be a 1d array of shape (j, ). For example, eta = np.linspace(-1, 1,

100). The polynomial will be evaluated on "np.meshgrid(xi, eta,

indexing=’ij’)".

35

36 Returns

37 -------

38 reconstructed_values_s : np.ndarray

39 A 2d array of shape (i, j) that represents the reconstructed values of the

first component at "np.meshgrid(xi, eta, indexing=’ij’)".

40 reconstructed_values_t : np.ndarray

41 A 2d array of shape (i, j) that represents the reconstructed values of the

second component at "np.meshgrid(xi, eta, indexing=’ij’)".

42

43 """

Assignment 1.1.3: Projection for ϕ ∈ S(Ωr)

You need to program two functions, the first one does the reduction and the second
one does the reconstruction.

1 def S_space_reduction(nodes, func):

2 """Reduce the function "func" to mimetic spectral element space S defined over

"nodes".

3

4 Parameters

5 ----------

6 nodes : np.ndarray

7 The partition of the interval I. It should be a 1d array of shape (m, ).

7
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For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].

8 func :

9 The function to be reduced to the space.

10

11 Returns

12 -------

13 expansion_coefficients:

14 A 2d array of shape (m, m) that contains the expansion coefficients.

15

16 """

17

18 def S_space_reconstruction(nodes, expansion_coefficients, xi, eta):

19 """Reconstruct the polynomial in the mimetic spectral element space C or G

over meshgrid of "xi" and "eta".

20

21 Parameters

22 ----------

23 nodes : np.ndarray

24 The partition of the interval I. It should be a 1d array of shape (m, ).

For example, nodes = [-1, -0.8, -0.3, 0.3, 0.8, 1].

25 expansion_coefficients : np.ndarray

26 A 2d array of shape (m, m) that contains the expansion coefficients.

27 xi : np.ndarray

28 The coordinates we evaluate the polynomial along the first axis. It should

be a 1d array of shape (i, ). For example, xi = np.linspace(-1, 1, 100).

The polynomial will be evaluated on "np.meshgrid(xi, eta, indexing=’ij’)".

29 eta : np.ndarray

30 The coordinates we evaluate the polynomial along the second axis. It

should be a 1d array of shape (j, ). For example, eta = np.linspace(-1, 1,

100). The polynomial will be evaluated on "np.meshgrid(xi, eta,

indexing=’ij’)".

31

32 Returns

33 -------

34 reconstructed_values : np.ndarray

35 A 2d array of shape (i, j) that represents the reconstructed values at

"np.meshgrid(xi, eta, indexing=’ij’)".

36

37 """

3 Incidence matrices

So far, we have constructed mimetic spectral element spaces C(Ω), G(Ω), D(Ω), R(Ω), and
S(Ω), and know how to project functions into them. However, the key structure between them, i.e.
the Hilbert complexes

0 −→ C(Ω)
∇×−→ D(Ω)

∇·−→ S(Ω) −→ 0,

0 −→ G(Ω)
∇−→ R(Ω)

∇×−→ S(Ω) −→ 0.

is not addressed yet. Recall that, in Assignment #0, the connection between the Lagrange space
and the edge space can be interpolated as the incidence matrix. Naturally, we look forward to a
similar sturcture in two-dimensions.

8
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We repeat that polynomials in the mimetic spectral element spaces have general formats as

ωh =
N∑
i=0

N∑
j=0

wijll
ij(ξ, η), ωh ∈ C(Ωr) or G(Ωr),

uh =

[
uh

vh

]
=

[∑N
i=0

∑N
j=1 uijle

ij(ξ, η)∑N
i=1

∑N
j=0 vijel

ij(ξ, η)

]
, uh ∈ D(Ωr),

σh =

[
σh

τh

]
=

[∑N
i=1

∑N
j=0 sijel

ij(ξ, η)∑N
i=0

∑N
j=1 tijle

ij(ξ, η)

]
, σh ∈ R(Ωr),

ϕh =
N∑
i=1

N∑
j=1

fijee
ij(ξ, η), ϕh ∈ S(Ωr).

In a geometric angle of view, the expansion coefficients represent degrees of freedom defined on
points, edges, and faces, see Fig. 1.

Fig. 1: Distributions of degrees of freedom in a geometric anlge of view.

Assume that these polynomials are projections of ω, u, σ, and ϕ in corresponding spaces,

ωh = π(ω), uh = π(u), σh = π(σ), ϕh = π(ϕ).

From the properties of Lagrange polynomials and edge polynomials, we can easily get the colusions
in following subsections.

9
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3.1 Incidence matrix EC

If u = ∇× ω, we must have uh = ∇× ωh and

(14) u⃗ = EC ω⃗.

The vectors are

ω⃗ =


w1

w2

...
w(N+1)2


where wj×(N+1)+i+1 = wij , i, j ∈ {0, 1, · · · , N}, and

u⃗ =



u1
u2
...

u(N+1)×N

v1
v2
...

vN×(N+1)


where u(j−1)×(N+1)+i+1 = uij , i ∈ {0, 1, · · · , N} , j ∈ {1, 2, · · · , N} and vj×N+i = vij , i ∈ {1, 2, · · · , N} , j ∈
{0, 1, · · · , N}. And the matrix EC is the incidence matrix who has 2N × (N +1) rows and (N +1)2

columns. It is a sparse matrix and the non-zero entries of it are

EC |(j−1)×(N+1)+i+1,(j−1)×(N+1)+i+1 = −1, i ∈ {0, 1, · · · , N} , j ∈ {1, 2, · · · , N} ,
EC |(j−1)×(N+1)+i+1,j×(N+1)+i+1 = 1, i ∈ {0, 1, · · · , N} , j ∈ {1, 2, · · · , N} ,
EC |N×(N+1)+j×N+i,j×(N+1)+i = 1, i ∈ {1, 2, · · · , N} , j ∈ {0, 1, · · · , N} ,
EC |N×(N+1)+j×N+i,j×(N+1)+i+1 = −1, i ∈ {1, 2, · · · , N} , j ∈ {0, 1, · · · , N} .

See Fig. 2 for an illustration of the geometric representation for the incidence matrix EC .

Fig. 2: An illustration of the geometric representation for the incidence matrix EC .
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3.2 Incidence matrix EG

If σ = ∇ω, we must have σh = ∇ωh and

(15) σ⃗ = EGω⃗.

The vector σ⃗ is

σ⃗ =



s1
s2
...

s(N+1)×N

t1
t2
...

tN×(N+1)


where sj×N+i = sij , i ∈ {1, 2, · · · , N} , j ∈ {0, 1, · · · , N} and t(j−1)×(N+1)+i+1 = tij , i ∈ {0, 1, · · · , N} , j ∈
{1, 2, · · · , N}. And the matrix EG is the incidence matrix who has 2N × (N +1) rows and (N +1)2

columns. It is a sparse matrix and the non-zero entries of it are

EG|j×N+i,j×(N+1)+i = −1, i ∈ {1, 2, · · · , N} , j ∈ {0, 1, · · · , N} ,
EG|j×N+i,j×(N+1)+i+1 = 1, i ∈ {1, 2, · · · , N} , j ∈ {0, 1, · · · , N} ,
EG|N×(N+1)+(j−1)×(N+1)+i+1,(j−1)×(N+1)+i+1 = −1, i ∈ {0, 1, · · · , N} , j ∈ {1, 2, · · · , N} ,
EG|N×(N+1)+(j−1)×(N+1)+i+1,j×(N+1)+i+1 = 1, i ∈ {0, 1, · · · , N} , j ∈ {1, 2, · · · , N} .

See Fig. 3 for an illustration of the geometric representation for the incidence matrix EG.

Fig. 3: An illustration of the geometric representation for the incidence matrix EG.

3.3 Incidence matrix ED

If ϕ = ∇ · u, we must have ϕh = ∇ · uh and

(16) ϕ⃗ = EDu⃗.
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The vector ϕ⃗ is

ϕ⃗ =


f1
f2
...

fN2


where f(j−1)×N+i = wij , i, j ∈ {1, 2, · · · , N}. The matrix ED is the incidence matrix who has N2

rows and 2N × (N + 1) columns. It is a sparse matrix and the non-zero entries of it are

ED|(j−1)×N+i,(j−1)×(N+1)+i = −1, i, j ∈ {1, 2, · · · , N} ,
ED|(j−1)×N+i,(j−1)×(N+1)+i+1 = 1, i, j ∈ {1, 2, · · · , N} ,
ED|(j−1)×N+i,N×(N+1)+(j−1)×N+i = −1, i, j ∈ {1, 2, · · · , N} ,
ED|(j−1)×N+i,N×(N+1)+j×N+i = 1, i, j ∈ {1, 2, · · · , N} .

See Fig. 4 for an illustration of the geometric representation for the incidence matrix ED.

Fig. 4: An illustration of the geometric representation for the incidence matrix ED.

3.4 Incidence matrix ER

If ϕ = ∇× σ, we must have ϕh = ∇× σh and

(17) ϕ⃗ = ERσ⃗.

The matrix ER is the incidence matrix who has N2 rows and 2N × (N + 1) columns. It is a sparse
matrix and the non-zero entries of it are

ER|(j−1)×N+i,N×(N+1)+(j−1)×(N+1)+i = −1, i, j ∈ {1, 2, · · · , N} ,
ER|(j−1)×N+i,N×(N+1)+(j−1)×(N+1)+i+1 = 1, i, j ∈ {1, 2, · · · , N} .
ER|(j−1)×N+i,(j−1)×N+i = 1, i, j ∈ {1, 2, · · · , N} ,
ER|(j−1)×N+i,j×N+i = −1, i, j ∈ {1, 2, · · · , N} .

See Fig. 5 for an illustration of the geometric representation for the incidence matrix ER.

12



D
G
M
P
—
D
oc
um
en
t

MSEM-A1-Higher-dimensions Version 2025/08/15.00:35 ▷——◁

Fig. 5: An illustration of the geometric representation for the incidence matrix ER.

Assignment 1.2.0: Incidence matrix EC

You need to program a function to compute the incidence matrix EC . Then you can
play with the incidence matrix to verify (14).

Assignment 1.2.1: Incidence matrix EG

You need to program a function to compute the incidence matrix EG. Then you can
play with the incidence matrix to verify (15).

Assignment 1.2.2: Incidence matrix ED

You need to program a function to compute the incidence matrix ED. Then you can
play with the incidence matrix to verify (16).

Assignment 1.2.3: Incidence matrix ER

You need to program a function to compute the incidence matrix ER. Then you can
play with the incidence matrix to verify (17).

4 Three dimensions

In this series of assignments, we will not go to three dimensions. But the approach is similar.
Read [1, Chapter 2] for the details.
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