Source code for mass_matrices_trace

"""

⭕ To access the source code, click on the [source] button at the right
side or click on
:download:`[mass_matrices_trace.py]</contents/LIBRARY/ptc/mathischeap_ptc/mass_matrices_trace.py>`.
Dependence may exist. In case of error, check import and install required
packages or download required scripts. © mathischeap.com

"""

import numpy as np
from quadrature import Gauss
from mimetic_basis_polynomials_2d import grid2d, MimeticBasisPolynomials2D
from scipy import sparse as spspa
from coordinate_transformation_surface import extract_surface_coordinate_transformations_of




[docs] class MassMatricesTrace(object): """ The mass matrices of trace spaces :math:`\\text{TN}_{N}(\\partial\\Omega)`, :math:`\\text{TE}_{N-1}(\\partial\\Omega)` and :math:`\\text{TF}_{N-1}(\\partial\\Omega)`. :param bf: A :class:`MimeticBasisPolynomials` (not :class:`MimeticBasisPolynomials2D`) instance. :type bf: MimeticBasisPolynomials :param ct: A CoordinateTransformation instance that represents the mapping :math:`\\Phi:\\Omega_{\mathrm{ref}}\\to\\Omega`. :type ct: CoordinateTransformation :param quad_degree: (default: ``None``) The degree used for the numerical integral. It should be a list or tuple of three positive integers. If it is ``None``, a suitable degree will be obtained from ``bf``. :type quad_degree: list, tuple :example: >>> from coordinate_transformation import CoordinateTransformation >>> from coordinate_transformation import Phi, d_Phi >>> from mimetic_basis_polynomials import MimeticBasisPolynomials >>> ct = CoordinateTransformation(Phi, d_Phi) >>> bf = MimeticBasisPolynomials('Lobatto-4', 'Lobatto-3', 'Lobatto-2') >>> MMT = MassMatricesTrace(bf, ct) >>> MMT.TF # doctest: +ELLIPSIS <52x52 sparse matrix of type '<class 'numpy.float64'>'... """ def __init__(self, bf, ct, quad_degree=None): assert bf.__class__.__name__ == 'MimeticBasisPolynomials' assert ct.__class__.__name__ == 'CoordinateTransformation' self.bf = bf self.ct = ct if quad_degree is None: bf_N = bf.degree quad_degree = [bf_N[i]+2 for i in range(3)] else: pass self.quad_degree = quad_degree qn_0, qw_0 = Gauss(quad_degree[0]) qn_1, qw_1 = Gauss(quad_degree[1]) qn_2, qw_2 = Gauss(quad_degree[2]) self.quad_weights = {'NS': np.kron(qw_2, qw_1), 'WE': np.kron(qw_2, qw_0), 'BF': np.kron(qw_1, qw_0)} self.quad_nodes = {'NS': [qn_1, qn_2], 'WE': [qn_0, qn_2], 'BF': [qn_0, qn_1],} self._rho_tau_ = {'NS':grid2d(qn_1, qn_2), 'WE':grid2d(qn_0, qn_2), 'BF':grid2d(qn_0, qn_1)} nodes = self.bf.nodes self.bft = {'NS':MimeticBasisPolynomials2D(nodes[1], nodes[2]), 'WE':MimeticBasisPolynomials2D(nodes[0], nodes[2]), 'BF':MimeticBasisPolynomials2D(nodes[0], nodes[1])} @property def TN(self): """The mass matrix :math:`\\mathbb{M}_{\\text{N}}`. :return: Return a csc_matrix representing the mass matrix. """ raise NotImplementedError("Could you code it?") @property def TE(self): """The mass matrix :math:`\\mathbb{M}_{\\text{E}}`. :return: Return a csc_matrix representing the mass matrix. """ raise NotImplementedError("Could you code it?") @property def TF(self): """The mass matrix :math:`\\mathbb{M}_{\\text{F}}`. :return: Return a csc_matrix representing the mass matrix. """ N, S, W, E, B, F = extract_surface_coordinate_transformations_of(self.ct) rho, tau = self.quad_nodes['NS'] bf = self.bft['NS'].face_polynomials(rho, tau) # North side g = N.metric(*self._rho_tau_['NS']) M_N = np.einsum('im, jm, m -> ij', bf, bf, np.reciprocal(np.sqrt(g)) * self.quad_weights['NS'], optimize='greedy') # South side g = S.metric(*self._rho_tau_['NS']) M_S = np.einsum('im, jm, m -> ij', bf, bf, np.reciprocal(np.sqrt(g)) * self.quad_weights['NS'], optimize='greedy') rho, tau = self.quad_nodes['WE'] bf = self.bft['WE'].face_polynomials(rho, tau) # West side g = W.metric(*self._rho_tau_['WE']) M_W = np.einsum('im, jm, m -> ij', bf, bf, np.reciprocal(np.sqrt(g)) * self.quad_weights['WE'], optimize='greedy') # East side g = E.metric(*self._rho_tau_['WE']) M_E = np.einsum('im, jm, m -> ij', bf, bf, np.reciprocal(np.sqrt(g)) * self.quad_weights['WE'], optimize='greedy') rho, tau = self.quad_nodes['BF'] bf = self.bft['BF'].face_polynomials(rho, tau) # Back side g = B.metric(*self._rho_tau_['BF']) M_B = np.einsum('im, jm, m -> ij', bf, bf, np.reciprocal(np.sqrt(g)) * self.quad_weights['BF'], optimize='greedy') # Front side g = F.metric(*self._rho_tau_['BF']) M_F = np.einsum('im, jm, m -> ij', bf, bf, np.reciprocal(np.sqrt(g)) * self.quad_weights['BF'], optimize='greedy') M_N = spspa.csc_matrix(M_N) M_S = spspa.csc_matrix(M_S) M_W = spspa.csc_matrix(M_W) M_E = spspa.csc_matrix(M_E) M_B = spspa.csc_matrix(M_B) M_F = spspa.csc_matrix(M_F) M = spspa.bmat([(M_N , None, None, None, None, None), (None, M_S , None, None, None, None), (None, None, M_W , None, None, None), (None, None, None, M_E , None, None), (None, None, None, None, M_B , None), (None, None, None, None, None, M_F )], format='csc') return M
if __name__ == '__main__': import doctest doctest.testmod() from coordinate_transformation import Phi, d_Phi from coordinate_transformation import CoordinateTransformation from mimetic_basis_polynomials import MimeticBasisPolynomials ct = CoordinateTransformation(Phi, d_Phi) bf = MimeticBasisPolynomials('Lobatto-4', 'Lobatto-3', 'Lobatto-2') MMT = MassMatricesTrace(bf, ct) M2 = MMT.TF print(M2)