coordinate_transformation_surface.py¶
Compute the coordinate transformation related variables for a surface mapping, ,
We get an instance of class CoordinateTransformationSurface
. The
transformations are its methods.
⭕ To access the source code, click on the [source] button at the right
side or click on
[coordinate_transformation_surface.py]
.
Dependence may exist. In case of error, check import and install
required packages or download required scripts. © mathischeap.com
- class coordinate_transformation_surface.CoordinateTransformationSurface(Psi, d_Psi, iJM=None)[source]¶
The surface coordinate transformation class.
- Parameters:
Psi (function) –
The mapping . It should be a function which returns three components of the mapping, i.e.,
d_Psi (function) –
The Jacobian matrix of , . It should be a function return the 6 (3*2) components of the Jacobian matrix, i.e.,
( , ), ( , ), ( , ).
iJM – The inverse Jacobian matrix.
- Example:
>>> ctS = CoordinateTransformationSurface(Psi, d_Psi) >>> rho = np.linspace(-1,1,20) >>> tau = np.linspace(-1,1,20) >>> rho, tau = np.meshgrid(rho, tau, indexing='ij') >>> x, y, z = ctS.mapping(rho, tau) >>> J = ctS.Jacobian_matrix(rho, tau) >>> np.shape(J) (3, 2, 20, 20) >>> G = ctS.metric_matrix(rho, tau) >>> np.shape(G) (2, 2, 20, 20) >>> g = ctS.metric(rho, tau) >>> np.shape(g) (20, 20)
- Jacobian_matrix(rho, tau)[source]¶
A wrap of the input Jacobian matrix,
d_Psi
, i.e., .- Returns:
Return the Jacobian matrix :
- inverse_Jacobian_matrix(rho, tau)[source]¶
Compute the inverse Jacobian matrix, .
- Returns:
Return the inverse Jacobian matrix :
- coordinate_transformation_surface.extract_surface_coordinate_transformations_of(ct, which_sides=None)[source]¶
We extract the six boundary coordinate transformations from a
CoordinateTransformation
instance representing a 3D mapping .- Parameters:
ct (CoordinateTransformation) – A CoordinateTransformation instance that represents the mapping .
which_sides – (default:
None
) We want to extract sub-mappings on which sides?
- Returns:
A tuple of 6
CoordinateTransformationSurface
instances representing the north (), south (), west (), east (), back () and front () boundaries.
↩️ Back to Ph.D. thesis complements (ptc).