cite as¶
.bib¶
@Inbook{Gerritsma2020Algebraic,
author="Gerritsma, Marc
and Jain, Varun
and Zhang, Yi
and Palha, Artur",
editor="van Brummelen, Harald
and Corsini, Alessandro
and Perotto, Simona
and Rozza, Gianluigi",
title="Algebraic Dual Polynomials for the Equivalence of Curl-Curl Problems",
bookTitle="Numerical Methods for Flows: FEF 2017 Selected Contributions",
year="2020",
publisher="Springer International Publishing",
address="Cham",
pages="307--320",
abstract="In this paper we will consider two curl-curl equations in two dimensions. One curl-curl problem for a scalar quantity F and one problem for a vector field E. For Dirichlet boundary conditions n{\texttimes}E={\^E}⊣{\$}{\$}{\backslash}boldsymbol {\{}n{\}} {\backslash}times {\backslash}boldsymbol {\{}E{\}} = {\backslash}hat {\{}E{\}}{\_}{\{}{\backslash}dashv {\}}{\$}{\$}on E and Neumann boundary conditions n{\texttimes}curlF={\^E}⊣{\$}{\$}{\backslash}boldsymbol {\{}n{\}} {\backslash}times {\backslash}mathbf {\{}{\{}curl{\}}{\}}{\backslash},F={\backslash}hat {\{}E{\}}{\_}{\{}{\backslash}dashv {\}}{\$}{\$}, we expect the solutions to satisfy E{\thinspace}={\thinspace}curl F. When we use algebraic dual polynomial representations, these identities continue to hold at the discrete level. Equivalence will be proved and illustrated with a computational example.",
isbn="978-3-030-30705-9",
doi="10.1007/978-3-030-30705-9_27",
url="https://doi.org/10.1007/978-3-030-30705-9_27"
}
↩️ Back to 🖊️︎ PUBLICATIONS.